## Сервоприводы ІС 20, ІС 40

Техническая информация · RUS 3.1.6.4 Редакция 06.07







- IC 20 базовый вариант сервопривода, управляется 3-х позиционно-шаговым сигналом и имеет переключатель между автоматическим и ручным режимами работы. ІС..20Е с функцией электронного позиционирования и режимом настройки в случае неисправности кабеля
- IC 40 предназначен для решения комплексных задач по автоматизации с программируемыми функциями для гибкой адаптации к любой установке, имеет встроенную память для статистики и счетчик неисправностей
- Сервоприводы имеют внешний указатель положения
- Конструкция сервоприводов удобна для монтажа, наладки и обслуживания
- Сервоприводы и дроссельные заслонки BVG, BVA и BVH соединяются между собой без промежуточных тяг
- Сервоприводы ІС 20, ІС 40 сертифицированы в России





## Оглавление

| цифровыми входами                                                   |
|---------------------------------------------------------------------|
|                                                                     |
| 2-х ступенчатый режим работы с двумя цифровыми входами              |
| входами                                                             |
| поворота                                                            |
| Аналоговые режимы работы 2127                                       |
| 2-х позиционный режим                                               |
| тактового импульса                                                  |
| 2-х позиционный режим работы с изменением высоты тактового импульса |
| 2-х позиционный режим с переключением                               |
| характеристик I                                                     |
| характеристик II                                                    |
|                                                                     |



Оглавление

| Распознавание сигнала       57         Аналоговый вход       57         Фильтрация и гистерезис токового сигнала       57         Приоритет и время поворота при режимах работы       110         110       58         Выходы       59         Ручное управление       60         Непосредственная установка положения       60         Симуляция входных сигналов       60         Статистика       61         Счетчик       61         Измеряемые значения       61         Вызов статистики       61         Вызов сообщений о неисправностях       61         Дисплей       62         Нормальный режим работы       62 | Адаптеры для монтажа IC 20, IC 40 на дроссельных клапанах DKL, DKG |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Предупреждения и неисправности                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | диаметром                                                          |
| Функции выходов реле RO 1 и RO 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Размеры IC 20/IC 40 + BVH                                          |
| Схема подключения65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Техническое обслуживание81                                         |
| Взаимозаменяемость приводов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Словарь                                                            |
| GT 31 заменяется на IC 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Пусковой расход горелки82                                          |
| GT 31 заменяется на IC 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Положение                                                          |
| М5/М6 заменяются на ІС 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Высота тактового импульса                                          |
| Выбор69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Легенда                                                            |
| Указания по проектированию       70         Выбор кабелей       70         Подключение       70         Цифровые входы IC 40       70         Сигнал обратной связи IC 40       71         Потенциометр обратной связи для IC 20/IC 40       72         Монтаж       73         Ввод в эксплуатацию IC 40       73         Принадлежности       74         IC 20, IC 40 Теплозащитная пластина       74                                                                                                                                                                                                                     |                                                                    |





IC 20

## Применение

Сервопривода IC 20 и IC 40 применяются в тех случаях, когда требуется точное и регулируемое вращательное движение между 0° и 90°. Они монтируются на дроссельные заслонках типа BVG, BVA, BVH и BVHS для регулирования расходов газа и воздуха газовых горелок. Диапазон регулирования до 1:10.

Встроенный потенциометр обратной связи (опцион) позволяет в любой момент контролировать степень открытия дроссельной заслонки. Этот сигнал может быть использован в системе автоматизации.

#### IC 20

IC 20 применяется в качестве базового варианта. Он управляется 3-х позиционным сигналом. Наличие переключателя автоматического и ручного режимов работы и внешней индикации положения позволяет облегчить настройку конечных выключателей при пусконаладочных работах. Это также позволяет точно настроить минимальную мощность горелки.

Применение



IC 40

#### IC 40

IC 40 предоставляет более широкие функциональные возможности. Он предназначен для непрерывного и ступенчатого регулирования мощности горелки.

Для задания параметров сервопривода IC 40 - необходим персональный компьютер с программным обеспечением BCSoft.

Вместе с программным обеспечением поставляется оптический адаптер (интерфейс) для установки всех значений процессов.

Различные режимы работы заложены в памяти прибора, к тому же они могут быть изменены. Исходя из этого определяют режим управления (2-х позиционный, 3-х позиционношаговый или плавный), а также время и угол поворота и промежуточные положения.

С помощью программного обеспечения можно управлять сервоприводом также в ручном режиме.

Один раз установленные параметры настройки для одного сервопривода сохраняются в компьютере и могут быть легко перенесены на другие приборы. Это экономит время при пуско-наладочных работах.

Технический персонал может с помощью BCSoft узнать статистические данные, как, например, время работы, количество включений и все сообщения о неисправностях. Некоторые значения могут устанавливаться на нуль, например, для регистрации данных за определенный период.

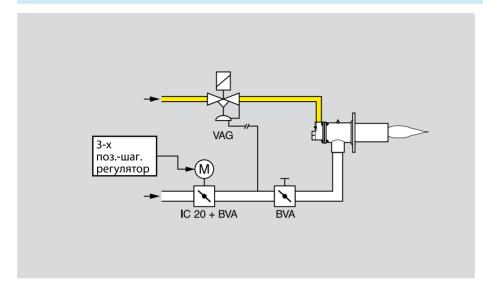
Применение

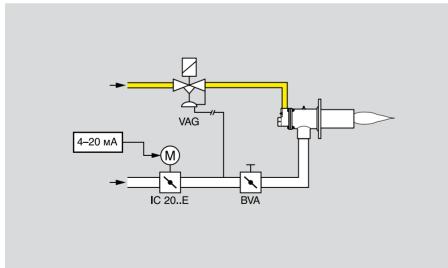


IC 20 c BVG 80



Роликовая печь в керамической промышленности





Кузнечная печь

## Примеры применения

Сервопривод может быть смонтирован непосредственно на дроссельных заслонках BVG, BVA, BVH и BVHS.







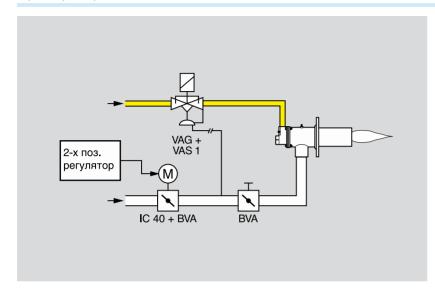
## ІС 20, плавное регулирование

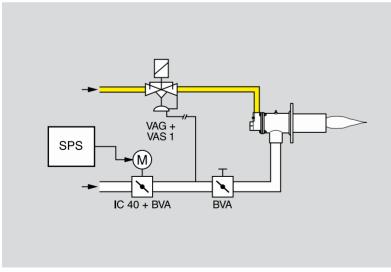
Для технологических процессов, где необходима высокая точность регулирования температуры при незначительной циркуляции дымовых газов в печи.

Сервопривод IC 20 управляется 3-х позиционно-шаговым регулятором.

## ІС 20..Е, плавное регулирование

Предназначен для технологических процессов, где необходима высокая точность регулирования температуры при незначительной циркуляции дымовых газов в печи. Сервопривод IC 20..Е управляется сигналом 4-20 мA, 0-20 мA или 0-10 В.


## IC 40, плавное регулирование


Предназначен для технологических процессов, где необходима высокая точность регулирования температуры при незначительной циркуляции дымовых газов в печи.

Сервопривод IC 40 управляется сигналом 4-20 мА.

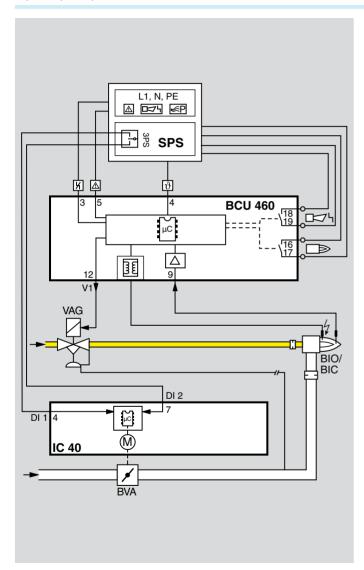
Кривая изменения управляющего тока может иметь до пяти опорных точек соответствующих технологическому процессу.







## ІС 40, ступенчатое регулирование


Предназначен для процессов с очень равномерным распределением температуры в рабочем пространстве печи. Сервопривод IC 40 управляется 2-х позиционным регулятором и работает в тактовом режиме ВКЛ/ВЫКЛ (open/closed) или МАКСИМУМ/МИНИМУМ (high/low). В случае отключения напряжения сервопривод закрывает заслонку. Время поворота сервопривода свободно программируется в диапазоне от 5 до 25 секунд.

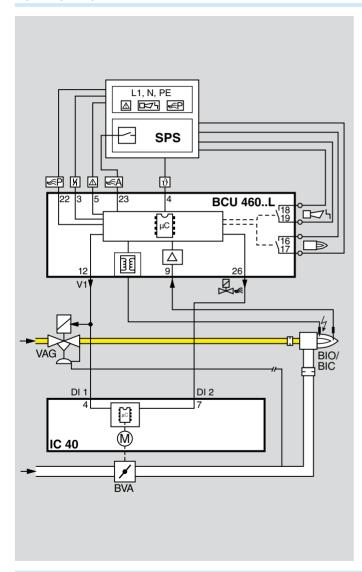
## IC 40, ступенчатое регулирование с 3 уровнями производительности горелки

Предназначен для процессов с очень равномерным распределением температуры в рабочем пространстве печи с 3 уровнями настройки производительности горелки. Сервопривод IC 40 управляется печным контроллером в тактовом режиме МАКСИМУМ/ПРОМЕЖУТОЧНОЕ/МИНИМУМ (high/middle/low) или МАКСИМУМ/ПРОМЕЖУТОЧНОЕ/МИНИМУМ/ЗАКРЫТО (high/middle/low/closed). Таким образом, может, например, настраиваться режим розжига.

Установленный датчик давления DG по превышению давления (опция), контролирует давление воздуха в горелке в режиме розжига. Время поворота сервопривода свободно программируется в диапазоне от 5 до 50 (75) секунд.






## IC 40, плавное регулирование с трех позиционно-шаговым регулятором

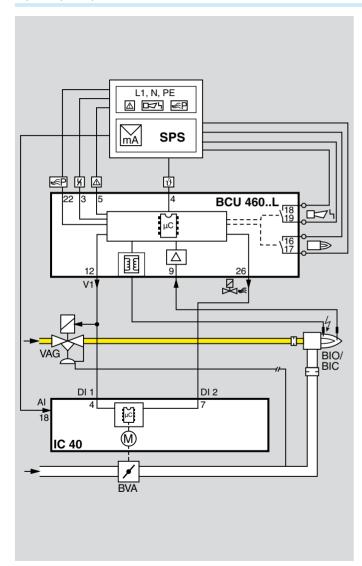
Сервопривод IC 40 управляется трех позиционношаговым регулятором 3PS и устанавливает дроссельную заслонку BVA в положение розжига. Горелка начинает разжигаться. Как только горелка разжигается, сигнализирующий контакт автомата управления горелкой BCU 460 замыкается, BCU разрешает регулирование температуры. В зависимости от мощностных требований к горелке, заслонка в диапазоне между минимальной или основной нагрузкой будет открываться или закрываться. При отсутствии трех позиционно-шагового сигнала, заслонка останется в текущем положении.

Если оба входа IC 40 (DI 1 и DI 2) управляются после того, как горелка была выключена, то дроссельный клапан после позиции МИНИМУМ будет продолжать закрываться, (см. рабочий режим 12: 3х позиционношаговое регулирование с позиции МИНИМУМ).

| DI 1 | DI 2 | Положение IC 40                        | Положение<br>заслонки                 |
|------|------|----------------------------------------|---------------------------------------|
| выкл | выкл | Ожидание / Стоп                        | Ожидание                              |
| ВКЛ  | ВЫКЛ | Открытие до положения<br>МАКСИМУМ      | До достижения<br>основной<br>нагрузки |
| ВЫКЛ | ВКЛ  | Закрытие до положения<br>ПРОМЕЖУТОЧНОЕ | До достижения минимальной нагрузки    |
| ВКЛ  | ВКЛ  | МИНИМУМ                                | Дальнейшее<br>закрытие<br>заслонки    |






## IC 40, ступенчатое регулирование с предварительной продувкой

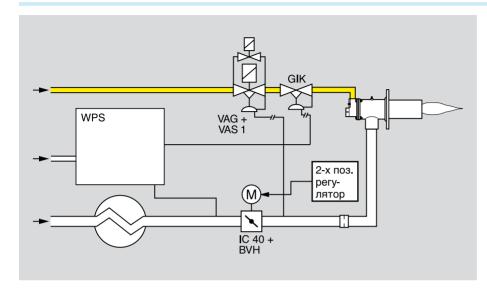
Центральный контроллер начинает предварительную продувку. Вход DI 2 активизирован через выход воздушного клапана BCU и приводит дроссельную заслонку BVA в положение предварительной продувки. Если есть температурный запрос, блок управления горелки BCU активизирует вход DI 1 через выход клапана V1 и перемещает дроссельную заслонку в положении розжига. (Условие: IC 40 должен достигнуть положения розжига в момент воспламенения).После этого горелка разжигается.

Чтобы достичь основной нагрузки, DI 2 активизируется через выход 26 воздушного клапана BCU. Дроссельная заслонка циклически переключается между режимами основной и минимальной нагрузок (см. рабочий режим 11: 2х ступенчатое регулирование с двумя цифровыми входами).

|             |                            |                    | • • • • • • • • • • • • • • • • • • • •  |
|-------------|----------------------------|--------------------|------------------------------------------|
| DI 1/<br>V1 | DI 2/<br>Воздуш.<br>клапан | Положение<br>IC 40 | Положение заслонки                       |
| выкл        | выкл                       | ЗАКРЫТО            | ЗАКРЫТО                                  |
| вкл         | выкл                       | МИНИМУМ            | Позиция розжига/<br>минимальная нагрузка |
| ВКЛ         | ВКЛ                        | ПРОМЕЖУ-<br>ТОЧНОЕ | Основная нагрузка                        |
| выкл        | ВКЛ                        | МАКСИМУМ           | Предварительная<br>продувка              |

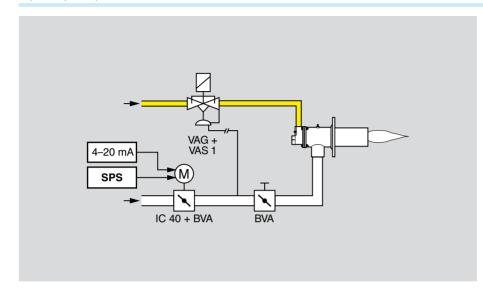





## IC 40, плавное регулирование с определенным положением розжига

Центральное управление начинается с продувки. Вход DI 2 активизирован через выход воздушного клапана BCU и перемещает дроссельную заслонку BVA в положение предварительной продувки. Если есть температурный запрос, автомат управления горелки BCU активизирует вход DI 1 через выход клапана V1 и перемещает дроссельную заслонку в положении розжига. (Условие: IC 40 должен достигнуть положения розжига во время розжига). После этого горелка разжигается

ВСИ приводится в действие через выход воздушного клапана DI 2. Аналоговый вход AI на приводе IC40 будет разомкнут. В зависимости от мощностных требований регулирования температуры дроссельная заслонка BVA будет непрерывно перемещаться между минимальной и основной нагрузкой в положении, заданном аналоговым входом AI (см. рабочий режим 27: 2х ступенчатое регулирование с двумя цифровыми входами и переменной высотой тактового цикла).


| Exequitivity repetition before the tarties of the tarties |                            |                    |                                                                     |  |
|-----------------------------------------------------------|----------------------------|--------------------|---------------------------------------------------------------------|--|
| DI 1/<br>V1                                               | DI 2/<br>Воздуш.<br>клапан | Положение<br>IC 40 | Положение заслонки                                                  |  |
| выкл                                                      | выкл                       | ЗАКРЫТО            | ЗАКРЫТО                                                             |  |
| вкл                                                       | выкл                       | МИНИМУМ            | Позиция розжига/<br>минимальная нагрузка                            |  |
| вкл                                                       | ВКЛ                        | Al                 | Каждое положение между позицией розжига и предварительной продувкой |  |
| выкл                                                      | вкл                        | МАКСИМУМ           | Предварительная продувка/<br>основная нагрузка                      |  |





## IC 40, компенсация нагретого в рекуператоре воздуха

Для технологических процессов, в которых необходимо регулировать нагретый до 450°С в рекуператоре воздух. В этом примере сервопривод IC 40 управляется 2-х позиционным регулятором. Он работает в тактовом режиме МИНИМУМ/МАКСИМУМ. Время поворота сервопривода свободно программируется в диапазоне от 5 до 25 секунд.



# IC 40, ступенчатое регулирование с Online-установкой мощности горелки

Предназначен для процессов с очень равномерным распределением температуры в рабочем пространстве печи и где необходима высокая точность регулирования температуры.

Эта функция позволяет, например, для поддержания температуры в печи понижать (повышать) тепловую мощность горелок, при этом сохраняя тактовый режим их работы. С помощью аналогового входа (4-20 мА) изменяется угол открытия заслонки и таким образом уменьшается (увеличивается) мощность горелки. В этом случае при снижении мощности горелки сохраняется равномерное распределение температуры за счёт сохранения тактового режима.

Эта функция сервопривода IC 40 может также использоваться в печах керамической промышленности для коррекции коэффициента избытка воздуха и компенсации изменения температуры подогрева воздуха после рекуператора.









## Сертификация

Сервопривод IC 20 и IC 40 – испытан и сертифицирован по образцам EC и соответствуют:

- Директива низкого напряжения (73/23/ EЭС) на основе EN 60730-1,
- Директиве Электромагнитной Совместимости (89 / 336 / ЕЭС) на основе EN 50082-2 и EN 50081-1.

Для сервопривода IC 40 применяется допуск UL.

Сервоприводы IC 20 и IC 40 имеют сертификаты соответствия Госстандарта РФ.

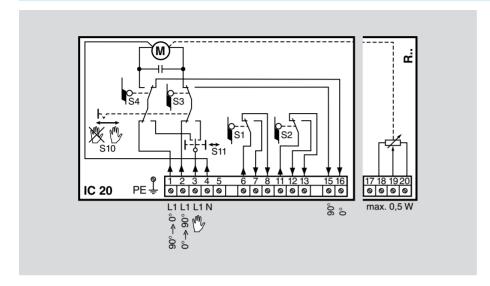
## ІС 20 - принцип действия

Сервопривод IC 20 поворачивается в направлении 0° или 90° в случае подачи управляющего сигнала на соответствующие клеммы.

В случае отключения напряжения сервопривод останавливается в текущем положении.

Большой крутящий момент в обесточенном состоянии делает излишними дополнительные тормозные элементы. Два свободно-устанавливаемых конечных выключателя ограничивают угол поворота сервопривода, позволяя индивидуально устанавливать минимальную и максимальную мощность горелки. Сервопривод IC 20 оптимально подходит для

дроссельных заслонок Kromschroder BVG, BVA и BVH.


## Автоматический/Ручной режим работы

Переключатель режима АВТОМАТИКА/РУЧНОЙ облегчает установку конечных выключателей при наладочных работах. Кроме того, положение срабатывания может регулироваться отверткой прямо в конечном выключателе.

Два свободно-устанавливаемых конечных выключателя ограничивают угол поворота сервопривода, позволяя индивидуально устанавливать минимальную и основную мощность горелки.

Два дополнительных, потенциально-свободных, устанавливаемых конечных выключателя позволяют управлять внешними приборами или контролировать промежуточные положения сервопривода.

Встраиваемый потенциометр обратной связи (опцион) предоставляет возможность контролировать текущее положение сервопривода. Эта информация может быть использована в системе безопасности.



## Схема подключения

Смотри «Указания по проектированию». Смотри «Технические данные».

## IC 20..E

При нормальном режиме работы на вход «ОК» подается напряжение питания. Задатчик выдает сигнал регулирования (0 (4)-20 мА, 0-10 В). Текущий сигнал соответствует углу поворота, который должен быть аппроксимирован (например при 0-20 мА сигнале, 10 мА соответствуют повороту заслонки 45°). Минимальные и максимальные углы поворота могут быть установлены при помощи конечных выключателей. Гистерезис может быть отрегулирован на потенциометре, чтобы исключить воздействие на входной сигнал.

### Дисплей

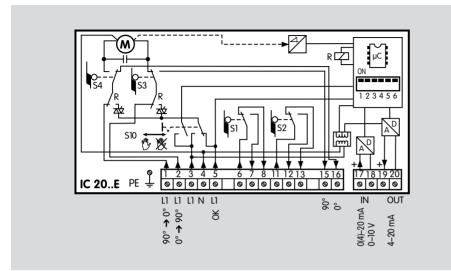
## Нормальная работа

| Синий светодиод | Красный светодиод | Состояние программы               |
|-----------------|-------------------|-----------------------------------|
| ВКЛ             | выкл              | Ручной режим                      |
| Мигание         | Мигание           | Калибровка только в ручном режиме |

## Регулирование Минимальной/Основной нагрузки (только в ручном режиме)

| Синий светодиод | Красный светодиод | Состояние программы               |
|-----------------|-------------------|-----------------------------------|
| вкл             | ВКЛ на 0.5 с      | Мин. значение > максим. значение* |
| ВЫКЛ. на <0.5 с | выкл              | Мин. или макс. уставка принята    |

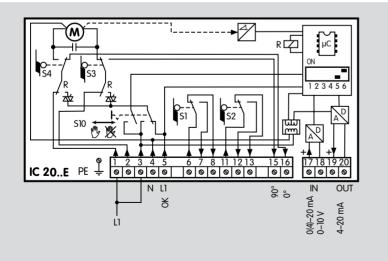
<sup>\*</sup> Значение будет принято только, если мин. или максим. кнопка будут нажаты в течение еще трех секунд.


## Предупреждения и неисправности

| Синий<br>светодиод | Красный<br>светодиод | Предупреждение*/<br>Неисправность* | Описание                                            | Причина                                                                                                                  |
|--------------------|----------------------|------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| выкл               | Мигание (1х)         | Предупреждение*                    | Прибор в режиме 4-20мА ,<br>входной сигнал - <3 мА  | - Разрыв кабеля на входе<br>уставки 4-20 мА                                                                              |
| выкл               | Мигание (2х)         | Предупреждение*                    | Частые изменения заданий, входной сигнал колеблется | - Уставка по гистерезису<br>слишком мала                                                                                 |
| ВЫКЛ               | Мигание(3х)          | Предупреждение*                    | Диапазон регулирования <1°                          | - Несправность при<br>программировании прибора<br>(мин. и макс. уставки)                                                 |
| Мигание 1(х)       | Постоянный<br>свет   | Неисправность**                    | Калибровка не удовлетворительная                    | - Диапазон регулирования <1° (перекрывание кулачков), неисправный привод, неисправный механизм, неисправный потенциометр |
| Мигание (2х)       | Постоянный светt     | Неисправность**                    | Внутренняя неисправность                            | - Неисправность прибора                                                                                                  |

<sup>\*</sup> Прибор продолжает функционировать. Предупреждение не показано в ручном режиме.



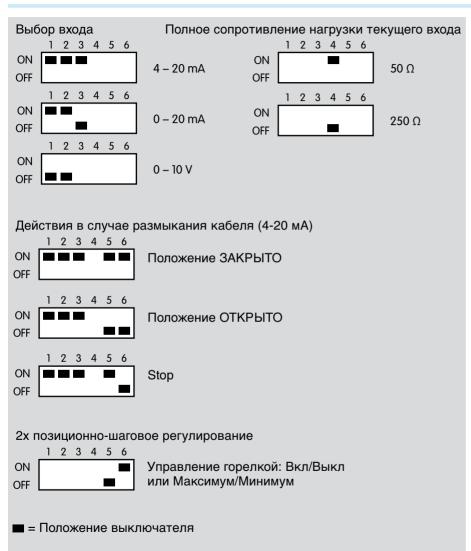

<sup>\*\*</sup> Неисправность: Прибор не продолжает работать нормально.



### Схема подключения

Смотри «Указания по проектированию».

Смотри «Технические данные».




## 2х позиционно-шаговое регулирование

Клеммы 1 и 3 перемыкают. DIP-переключатель устанавливается на 2х позиционношаговое регулирование.

Если входной сигнал подается на клемму 5, сервопривод прекращает работу.





## DIP микропереключатель

Вход задатчика, полное сопротивление нагрузки текущего входа, действия в случае размыкания кабеля (4-20 мА) или 2х позиционношаговое регулирование устанавливаются посредством DIP микропереключателя на сервоприводе.

## ІС 40 - принцип действия

Сервопривод IC 40 поворачивается в направлении 0° или 90°. Имеются 4 возможных режима для позиционного регулирования. При плавном 3-х позиционном режиме регулирования, возможно любое промежуточное положение. С помощью дополнительного токового входа также может задаваться любое промежуточное положение (опцион). Мигающий синий светодиод на корпусе IC 40 указывает на движение дроссельной заслонки. Указатель положения на корпусе сервопривода показывает угол её открытия. Дополнительная визуализация положения заслонки осуществляется через компьютер с помощью программного обеспечения BCSoft фирмы Kromschroder.

#### **BCSoft**

Последовательность открытия и закрытия заслонки параметрируется в программном обеспечении "BCSoft» и может быть индивидуальной для каждого конкретного случая применения.

Через BCSoft производится параметрирование всех уставок для сервопривода IC 40. Наладка и установка положения ЗАКРЫТО больше не выполняется вручную непосредственно на сервоприводе, а производится с помощью программного обеспечения.

BCSoft предоставляет возможность управлять дроссельной заслонкой и настраивать сервопривод вручную – смотри «Ручной режим работы».

Для программного обеспечения BCSoft имеется самостоятельная инструкция:

http://www.kromschroeder.de Products -> 03 Valve and butterflly valves -> Actuators IC 20, IC 40.

## Режимы работы

Режим работы определяют порядок движения сервопривода IC 40.

Время поворота и промежуточные положения сервопривода заданы для различных режимов работы, однако, в любое время (при монтаже на BVA, BVG, BVH и BVHS) они могут быть заново установлены с помощью BCSoft.

Сервопривод может работать в плавном и тактовом режиме с различными высотами тактового импульса. Высота тактового импульса задаёт степень открытия заслонки при тактовом режиме. Она может изменяться с помощью BCSoft.

Для лучшей визуализации состояний сервопривода ОТКРЫТО/ЗАКРЫТО в программном обеспечении BCSoft имеется диаграмма движения сервопривода.

## Различия стандартного режима работы и аналогового режима работы:

При **стандартном режиме** работы 2 цифровых входа (DI1 и DI2) предусмотрены как универсальные входы. Это означает, что если на вход подается напряжение 24 V= или 100...230 V~, то этот сигнал распознаётся, как ВКЛЮЧЕНО (положительная логика). В установке и переустановке величины и вида напряжения нет необходимости.

При аналоговом режиме работы в сервоприводе предусмотрен дополнительный вход (IN Analog). Это означает что, подключение к сервоприводу IC 40... А с аналогового входа 4-20 мА (опцион), позволяет расширить стандартные режимы работы дополнительными вариантами.

Сервопривод с дополнительным входом может согласно токовому сигналу поворачиваться в соответствующее промежуточное положение- см. Очередность положений и время поворота в рабочих режимах 1-0.

## Положения: ЗАКРЫТО, МИНИМУМ, ПРОМЕЖУТОЧНОЕ, МАКСИМУМ

В зависимости от установленного режима работы сервопривод может остановиться в 4-х положениях: Closed -  $3AKPbITO = 0^\circ = 0\%$ .

Low - МИНИМУМ= Минимальная нагрузка горелки, Middle - ПРОМЕЖУТОЧНОЕ,

High - MAKCИMУM = OTKPЫTO.

При этом не используемые данным режимом положения сервопривода блокируются.

Положение Закрыто всегда является калиброванным нулевым положением прибора и не может быть переустановлено.

Другие положения могут устанавливаться по желанию на месте.



Принципиальными являются следующие изменения границ параметров:

0% = ЗАКРЫТО -> МИНИМУМ -> ПРОМЕЖУТОЧНОЕ -> МАКСИМУМ <-100 %.

Положение ОТКРЫТО не может быть установлено меньше чем 10%: 10% < МАКСИМУМ ->

МАКСИМУМ < 100%.

При изменении положения в программном обеспечении, BCSoft проверяет новые значения на соответствие допустимым границам.

## Время поворота

В зависимости от режима имеется возможность установить до 6 длительностей времени поворота (от  $t_1$  до  $t_6$ ), соответственно от 0 до максимум 25,5 секунд.

При этом для каждого изменения положения необходимо минимальное время поворота.

Минимальное время поворота t<sub>min</sub>:

$$t_{min}$$
=  $\frac{4.5 \text{ с x изменение положения \%}}{100\%}$ 

Слишком маленькое время поворота IC 40 будет автоматически корректировать на минимально возможное значение. Если сервопривод должен вращаться как можно быстрее, то время поворота устанавливают на 0 секунд.

При не превышении изменения положения <16,2% сокращается время поворота пропорционально максимальному значению 25,5 секунд.

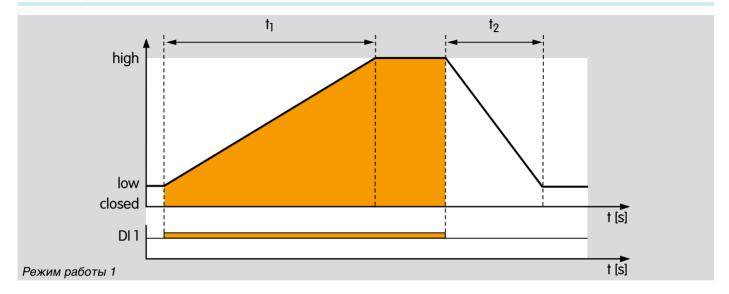
IC 40 корректирует время поворота на наибольшее возможное значение.

После внесения правильных параметров они автоматически отображаются и сохраняются в BCSoft.

Чтобы для конкретного случая выбрать правильные положения и время поворота, рекомендуем наладку сервопривода выполнять в ручном режиме работы – смотри Ручной режим.

### Выходы

Наряду с потенциометром обратной связи также имеются два выхода RO1 и RO2, которые могут свободно настраиваться на любые промежуточные положения сервопривода – смотри Выходы.


#### Статистика

BCSoft сохраняет и воспроизводит собранным сервоприводом статистические данные, такие как аварийные отключения, различные показания счетчика событий и значение величин - смотри Статистику.

## Функция аварийного закрытия заслонки

При неисправности или отключении питающего напряжения, взведённая спиральная пружина в дроссельной заслонке BVHS, механически поворачивает ось заслонки менее чем за 1 секунду в закрытое положение - смотри Функция аварийного закрытия.





## Стандартные режимы работы 1...12

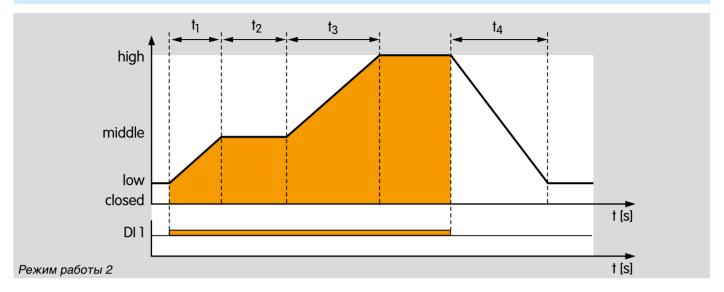
Общее описание - смотри Режимы работы.

## 2-х позиционный режим работы

Режим работы 1

В состоянии ожидания (DI 1 сигнал отсутствует) сервопривод находится в положении МИНИМУМ (положение МИНИМУМ может также быть равно  $0^{\circ}$  = положению «Закрыто»).

При подаче сигнала на цифровой вход DI1, сервопривод поворачивается со скоростью времени поворота  $t_1$  в положение МАКСИМУМ. При отключении сигнала на цифровом входе DI 1 сервопривод поворачивается со скоростью времени поворота  $t_2$  снова в положение МИНИМУМ.


| DI 1 | Положение                     |
|------|-------------------------------|
| ВЫКЛ | МИНИМУМ/ЗАКРЫТО<br>low/closed |
| ВКЛ  | МАКСИМУМ<br>high              |

При отключении сигнала на цифровом входе DI 1 до достижения положения МАКСИМУМ, сервопривод поворачивается со скоростью пропорциональной времени поворота  $t_2$  в положение МИНИМУМ.

Сервопривод работает в тактовом режиме MAKCИМУМ/ЗАКРЫТО (high/closed).

Возможные параметры для этого режима работы: Р 68017. Р 68018 и Р 68019.



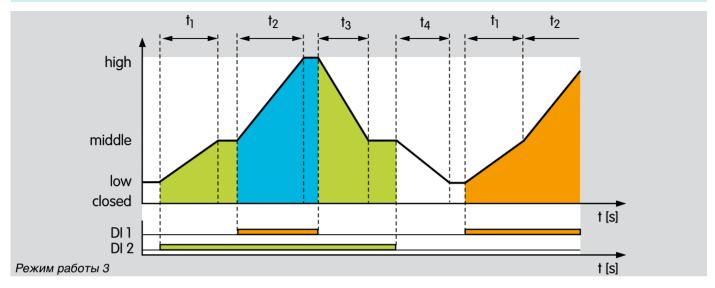


2-х позиционный режим работы с временем стабилизации розжига горелки

### Режим работы 2

В состоянии ожидания (на DI 1 сигнал отсутствует) сервопривод находится в положении МИНИМУМ (положение МИНИМУМ может также быть равно 0  $^{\circ}$  = положению ЗАКРЫТО).

При подаче сигнала на цифровой вход DI 1, сервопривод поворачивается со скоростью времени поворота  $t_1$  в положение ПРОМЕЖУТОЧНОЕ. После времени выдержки  $t_2$  сервопривод продолжает движение в положение МАКСИМУМ в течение времени  $t_3$ . При отключении сигнала на цифровом входе DI 1 сервопривод поворачивается со скоростью времени поворота  $t_4$  снова в положение МИНИМУМ.


| DI 1 | Положение       |
|------|-----------------|
| ВЫКЛ | МИНИМУМ/ЗАКРЫТО |
|      | low/closed      |
| ВКЛ  | МАКСИМУМ        |
|      | high            |

При отключении сигнала на цифровом входе DI1 до достижения положения MAKCИМУМ, сервопривод поворачивается со скоростью пропорциональной времени поворота t₄ в положение МИНИМУМ.

Сервопривод работает в тактовом режиме MAKCИМУМ/ПРОМЕЖУТОЧНОЕ/ЗАКРЫТО (high/middle/closed).

Возможные параметры для этого режима работы: Р 68021.





2-х ступенчатый режим работы с одним или двумя цифровыми входами

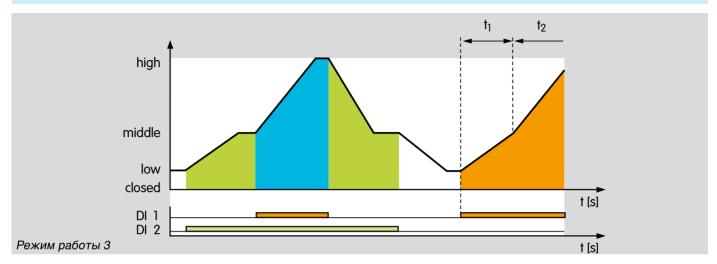
Режим работы 3

В состоянии ожидания ( на DI 1 и DI 2 сигнал отсутствует) находится в положении МИНИМУМ (положение МИНИМУМ может также быть равно 0  $^{\circ}$  = положению ЗАКРЫТО).

### Управление двумя цифровым входами

При подаче сигнала на цифровой вход DI 2, сервопривод поворачивается со скоростью времени поворота  $t_1$  из положения МИНИМУМ в положение ПРОМЕЖУТОЧНОЕ.

Если дополнительно подаётся сигнала на цифровой вход DI1, сервопривод поворачивается со скоростью времени поворота  $t_2$  в положение МАКСИМУМ.


При отключении сигнала на цифровом входе DI1, сервопривод поворачивается со скоростью времени

поворота  $t_3$  обратно в положение ПРОМЕЖУТОЧНОЕ, а при отключении сигнала на цифровом входе DI 2, сервопривод поворачивается со скоростью времени поворота  $t_4$  в положение МИНИМУМ.

Сервопривод работает в тактовом режиме МАКСИМУМ/ ПРОМЕЖУТОЧНОЕ/МИНИМУМ или МАКСИМУМ/ ПРОМЕЖУТОЧНОЕ/ЗАКРЫТО.

| DI 1 | DI 2 | Положение                        |
|------|------|----------------------------------|
| выкл | выкл | МИНИМУМ/ЗАКРЫТО<br>low/closed    |
| вкл  | выкл | МАКСИМУМ (приоритет DI1)<br>high |
| выкл | вкл  | ПРОМЕЖУТОЧНОЕ<br>middle          |
| ВКЛ  | ВКЛ  | МАКСИМУМ<br>high                 |





При этом режиме работы цифровой вход DI1 имеет приоритет, и наличие на нём сигнала всегда ведёт к открытию сервопривода в положение МАКСИМУМ. Это, например, позволяет через вход DI1 (независимо от DI2) осуществить продувку печи. Также с помощью обоих входов можно реализовать тактовый режим МАКСИМУМ/ПРОМЕЖУТОЧНОЕ/ МИНИМУМ.

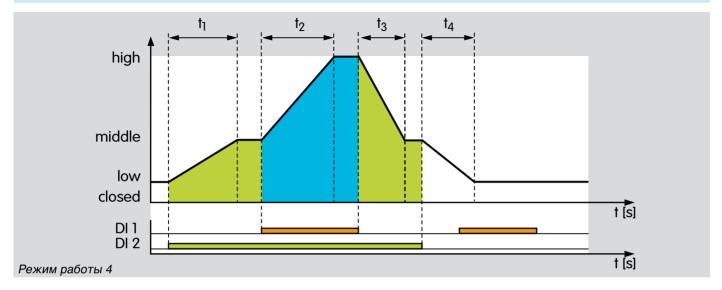
Возможные параметра для этого режима работы: Р 68015, Р 68016.

## Управление одним цифровым входом

При подаче сигнала на цифровой вход DI 1 (на DI 2 нет сигнала), сервопривод поворачивается в положение МАКСИМУМ. Время поворота  $t_1$  и  $t_2$  отрабатываются одно за другим.

При отключении DI1 сервопривод закрывает заслонку, отрабатывая последовательно время поворота  $t_3$  и  $t_4$ . Положение ПРОМЕЖУТОЧНОЕ служит как опорная точка и свободно параметрируется.

Наличие двух взаимозависимых скоростей поворота сервопривода позволяет изменять характеристику работы дроссельной заслонки. Например, можно согласовать характеристики газовой и воздушной заслонок горелки.


При этом режиме работы время поворота может быть до 51 с (2 x 25,5c).

При отключении сигнала на цифровом входе DI1 до достижения положения МАКСИМУМ, сервопривод поворачивается со скоростью пропорциональной времени поворота  $t_3$  и  $t_4$  в положение МИНИМУМ.

Сервопривод работает в тактовом режиме МАКСИМУМ/ЗАКРЫТО.

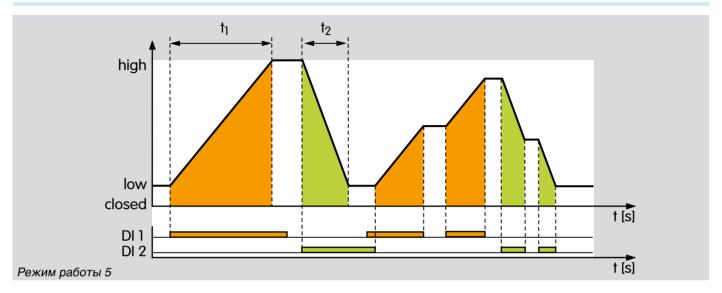
| DI 1 | DI 2 | Положение                  |
|------|------|----------------------------|
| выкл | ВЫКЛ | МИНИМУМ/ЗАКРЫТО low/closed |
| ВКЛ  | ВЫКЛ | МАКСИМУМ<br>high           |





## 2-х ступенчатый режим работы с двумя цифровыми входами

Режим работы 4


Порядок работы соответствует режиму работы 3 с другим приоритетом цифровых входов.

Цифровой вход DI 2 имеет преимущество перед DI 1. Это значит, что сигнал на DI1 не оказывает управляющего воздействия, если не подаётся сигнал на DI2.

| DI 1 | DI 2 | Положение                                  |
|------|------|--------------------------------------------|
| выкл | выкл | МИНИМУМ/ЗАКРЫТО<br>low/closed              |
| ВКЛ  | выкл | МИНИМУМ/ЗАКРЫТО (приоритет DI2) low/closed |
| выкл | вкл  | ПРОМЕЖУТОЧНОЕ middle                       |
| ВКЛ  | ВКЛ  | МАКСИМУМ<br>high                           |

Возможные параметра для этого режима работы: Р 68022.





### 3-х позиционно-шаговый режим работы

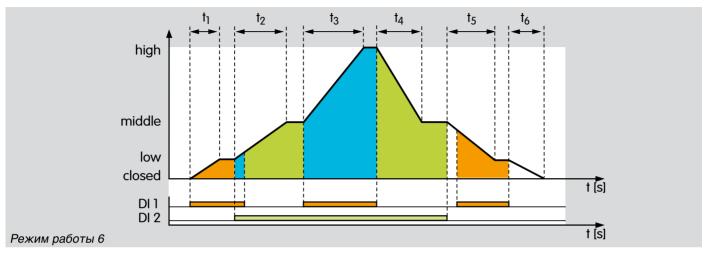
### Режим работы 5

До тех пор пока на цифровой вход DI1 подаётся сигнал, сервопривод открывает заслонку. Пока на цифровой вход DI2 подаётся сигнал, сервопривод закрывает заслонку.

Если на обоих цифровых входах отсутствует сигнал или на обоих имеется сигнал,сервопривод не меняет положение, поэтому он может быть остановлен в любой положении.

Плавное регулирование осуществляется 3-х позиционным сигналом. Угол поворота ограничивается положениями МИНИМУМ и МАКСИМУМ (положение МИНИМУМ может также быть равно 0° = положению ЗАКРЫТО).

Скорость открытия задаётся временем  $t_1$  на весь путь от положения МИНИМУМ до положения


МАКСИМУМ. Соответственно скорость закрытия задаётся временем  $t_2$  на весь путь от положения МАКСИМУМ до положения МИНИМУМ.

Возможные параметры для этого режима работы: Р 68012, Р 68013, Р 68014.

| DI 1 | DI 2 | Реакция                              |
|------|------|--------------------------------------|
| ВЫКЛ | ВЫКЛ | Ожидание/Стоп                        |
| ВКЛ  | ВЫКЛ | Открывается до положения<br>МАКСИМУМ |
| выкл | ВКЛ  | Закрывается до положения МИНИМУМ     |
| ВКЛ  | ВКЛ  | Ожидание/Стоп                        |

Этот вид управления часто применяется на печах в керамической и металлургической промышленности.





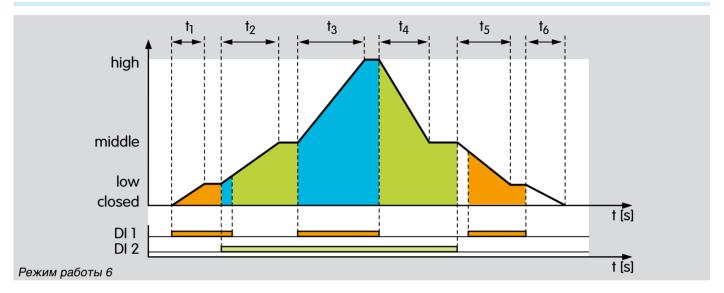
3-х ступенчатый режим работы с одним или двумя цифровыми входами

Режим работы 6

Каждая из 4-х комбинаций сигналов на входах DI1 и DI 2 определяет положение сервопривода:

| DI 1 | DI 2 | Положение            |
|------|------|----------------------|
| ВЫКЛ | ВЫКЛ | ЗАКРЫТО<br>closed    |
| ВКЛ  | ВЫКЛ | МИНИМУМ<br>low       |
| выкл | вкл  | ПРОМЕЖУТОЧНОЕ middle |
| вкл  | ВКЛ  | МАКСИМУМ<br>high     |

Каждое изменение сигнала задает в итоге для сервопривода новое положение. Если сигналы накладываются (смотри  $t_2$ ), сервопривод идёт в положение МАКСИМУМ. Если сигналы отсутствуют (смотри  $t_5$ ), сервопривод идёт в положение ЗАКРЫТО.


Этот режим работы позволяет реализовывать различные методы управления.

## Управление одним цифровым входом

на DI2 сигнал отсутствует: через цифровой вход DI1 сервопривод работает в тактовом режиме МИНИМУМ/ЗАКРЫТО.

DI1 сигнал отсутствует: через цифровой вход DI2 сервопривод работает в тактовом режиме.

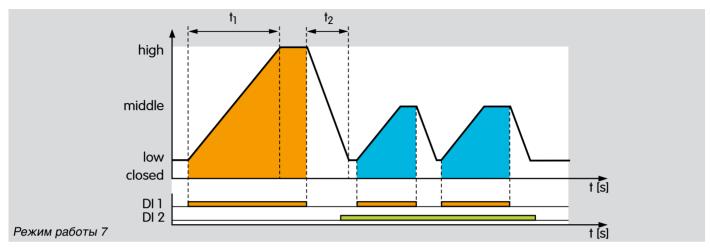




DI1 с продолжительным сигналом, например с помощью инвертируемой логики - смотри логика переключения.

Через цифровой вход DI2 сервопривод работает в тактовом режиме МАКСИМУМ/ МИНИМУМ (МАКСИМУМ/ЗАКРЫТО) используя, два взаимозависимых времени поворота до 51 с (2 x 25,5 c).

Если DI1 и DI2 подключены параллельно: сервопривод работает от одного сигнала в тактовом режиме MAKCИМУМ/ЗАКРЫТО используя, три взаимозависимых времени поворота до 76,5 с (3 x 25,5 c).


Наличие трёх взаимозависимых скоростей поворота сервопривода позволяет изменять характеристику работы дроссельной заслонки. Например, можно согласовать характеристики газовой и воздушной заслонок горелки.

### Управление двумя цифровыми входами

Использование всей комбинаторики обоих входов, например, управляющим контроллером, позволяет реализовать тактовое управление МАКСИМУМ/ПРОМЕЖУТОЧНОЕ/МИНИМУМ/ЗАКРЫТО (три ступени плюс положение ЗАКРЫТО).

Возможные параметра для этого режима работы: Р 68001.





2-х позиционный режим с переключением высоты тактового импульса

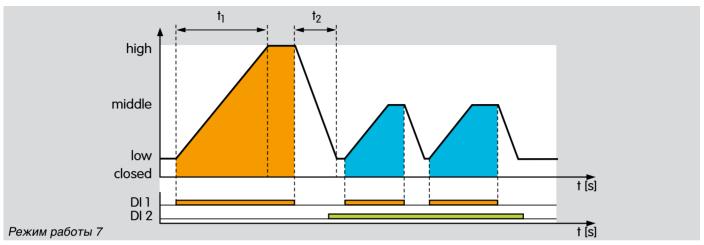
## Режим работы 7

В состоянии ожидания (на DI1 и DI2 сигнал отсутствует) сервопривод находится в положении МИНИМУМ (положение МИНИМУМ может также быть равно  $0^{\circ}$  = положению ЗАКРЫТО).

Цифровой вход DI 1 действует как вход тактового управления.

### DI2 без сигнала:

Через цифровой вход DI1 сервопривод работает в тактовом режиме Максимум/Минимум (МАКСИМУМ/ЗАКРЫТО).


### При подаче сигнала на DI2:

Сервопривод может в процессе работы переключиться с режима МАКСИМУМ/МИНИМУМ (МАКСИМУМ/ ЗАКРЫТО) на режим ПРОМЕЖУТОЧНОЕ/МИНИМУМ (ПРОМЕЖУТОЧНОЕ/ЗАКРЫТО). Тактовая высота задаётся сигналом в DI1 и переключается сигналом DI2. При этом через сигнал на цифровом входе

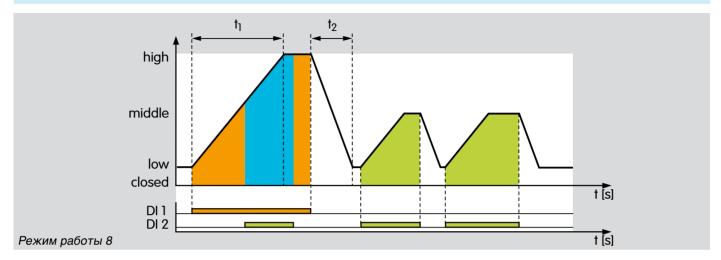
DI1 сервопривод управляется в тактовом режиме ПРОМЕЖУТОЧНОЕ/МИНИМУМ (ПРОМЕЖУТОЧНОЕ/ЗАКРЫТО). В этом случае, при снижении тепловой мощности печи, тем не менее, сохраняется тактовый режим управления, что обеспечивает равномерное температурное поле в рабочем пространстве. Режим МАКСИМУМ/МИНИМУМ может также применяться для продувки, а режим ПРОМЕЖУТОЧНОЕ/МИНИМУМ для нагрева, чтобы, например, сократить время предварительной продувки.

|   | DI 1 | DI 2 | Положение                                  |
|---|------|------|--------------------------------------------|
| E | ВЫКЛ | выкл | МИНИМУМ/ЗАКРЫТО<br>low/closed              |
|   | ВКЛ  | выкл | МАКСИМУМ<br>high                           |
| E | ВЫКЛ | вкл  | МИНИМУМ/ЗАКРЫТО (приоритет DI1) low/closed |
|   | ВКЛ  | вкл  | ПРОМЕЖУТОЧНОЕ<br>middle                    |





Скорость открытия заслонки задаётся временем  $t_1$  для всего пути от положения МИНИМУМ до положения МАКСИМУМ. Соответственно скорость закрытия заслонки задаётся временем  $t_2$  для всего пути от положения МАКСИМУМ до положения МИНИМУМ. Скорости поворота будут сохраняться при тактовом управлении с пониженной мощностью (сигнал на DI2). Время поворота будет сокращаться пропорционально уменьшению высоты такта.


Альтернативный режим работы (2-х позиционный режим с неизменной скоростью поворота):

| DI 1 | DI 2 | Положение                                     |
|------|------|-----------------------------------------------|
| выкл | выкл | МИНИМУМ/ЗАКРЫТО<br>low/closed                 |
| ВКЛ  | выкл | МАКСИМУМ<br>high                              |
| выкл | вкл  | МИНИМУМ/ЗАКРЫТО (приоритет DI1)<br>low/closed |
| ВКЛ  | вкл  | ПРОМЕЖУТОЧНОЕ<br>middle                       |

До тех пор пока подаётся сигнал на DI1, сигнал на DI 2 переключает сервопривод между положениями МАКСИМУМ и ПРОМЕЖУТОЧНОЕ. В этом случае целесообразно инвертировать логику цифрового входа DI2 - смотри Логику переключений.

При этом режиме работы есть уверенность, что сервопривод открывается и закрывается с постоянной скоростью.

Возможные параметра для этого режима работы: Р 68023.



## 2-х позиционный режим работы с 2-мя различными положениями ОТКРЫТО

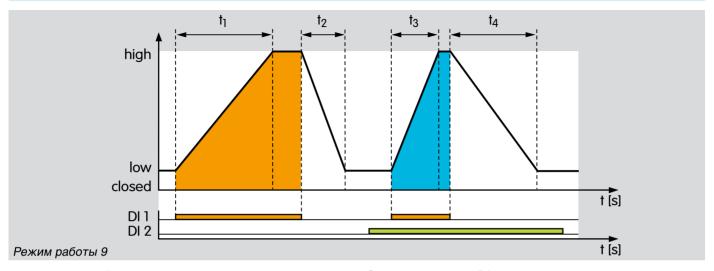
### Режим работы 8

Работа в этом режиме соответствует режиму 7 с той лишь разницей, что оба цифровых входа используются как тактовые входы.

Через цифровой вход DI1 сервопривод работает в тактовом режиме Максимум/Минимум (МАКСИМУМ/ ЗАКРЫТО), через цифровой вход DI2 сервопривод работает в тактовом режиме ПРОМЕЖУТОЧНОЕ/ МИНИМУМ (ПРОМЕЖУТОЧНОЕ/ЗАКРЫТО).

Поданный сигнал на DI1 (приоритет) всегда ведет в положение МАКСИМУМ, что, к примеру, может быть использовано для продувки печи.

| DI 1 | DI 2 | Положение                        |
|------|------|----------------------------------|
| ВЫКЛ | выкл | МИНИМУМ/ЗАКРЫТО<br>low/closed    |
| ВКЛ  | выкл | МАКСИМУМ<br>high                 |
| ВЫКЛ | ВКЛ  | ПРОМЕЖУТОЧНОЕ middle             |
| ВКЛ  | ВКЛ  | МАКСИМУМ (приоритет DI1)<br>high |


Альтернативный режим работы (2-х позиционный режим с неизменной скоростью поворота).

До тех пор пока подаётся сигнал на DI2, сигнал на DI 1 переключает сервопривод между положениями МАКСИМУМ и ПРОМЕЖУТОЧНОЕ.

При этом режиме работы есть уверенность, что сервопривод открывается и закрывается с постоянной скоростью.

Возможные параметра для этого режима работы: Р 68024.





## 2-х позиционный режим с переключением времени поворота

Режим работы 9

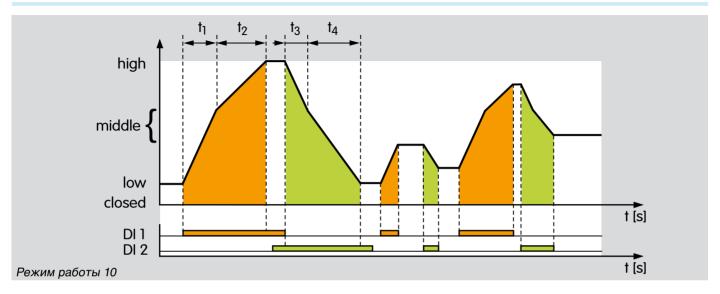
Цифровой вход DI1 действует как вход тактового управления.

Через цифровой вход DI1 сервопривод работает в тактовом режиме МАКСИМУМ/ МИНИМУМ (МАКСИМУМ/ЗАКРЫТО).

В отключенном состоянии (DI 1 без сигнала) сервопривод находится в положении МИНИМУМ (положение МИНИМУМ может также быть равно  $0^{\circ}$  = положению ЗАКРЫТО).

| DI 1 | Положение                     |
|------|-------------------------------|
| выкл | МИНИМУМ/ЗАКРЫТО<br>low/closed |
| вкл  | МАКСИМУМ<br>high              |

С помощью входа DI2 может переключаться время поворота сервопривода.


| DI 2 | Время открытия | Время закрытия |
|------|----------------|----------------|
| ВЫКЛ | t <sub>1</sub> | t <sub>2</sub> |
| ВКЛ  | t <sub>3</sub> | t <sub>4</sub> |

Переключение времени поворота может выполняться во время движения сервопривода.

Эта функция может, на пример, использоваться для быстрого перевода заслонки в положение продувки и, соответственно, для более медленного управления мощностью горелки.

Возможные параметра для этого режима работы: Р 68025.

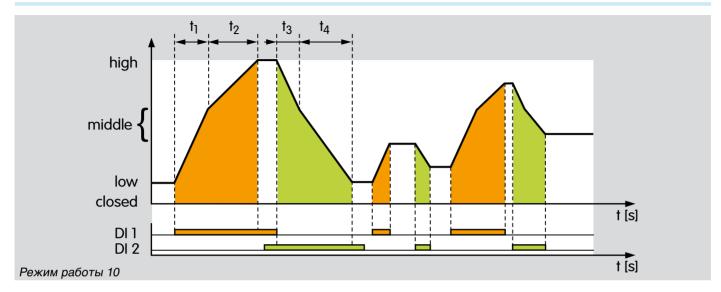




## 3-х позиционно-шаговый режим с дроблением времени поворота

Режим работы 10

До тех пор пока подаётся сигнал только на цифровой вход DI1, сервопривод открывается. Пока подаётся сигнал только на цифровой вход DI2, сервопривод закрывается.


Если на обоих цифровых входах отсутствует или подаётся сигнал, то сервопривод останавливается. Сервопривод может остановиться в любом положении.

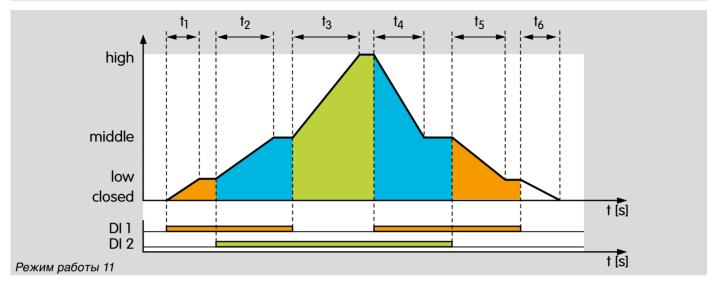
Сервопривод работает в режиме плавного регулирования и управляется сигналом 3-х позиционного регулирования.

Угол поворота ограничивается положением МИНИМУМ (положение МИНИМУМ может также быть равно  $0^\circ$  = положению ЗАКРЫТО) и положением МАКСИМУМ.

| DI 1 | DI 2 | Реакция                                                       |
|------|------|---------------------------------------------------------------|
| выкл | выкл | Ожидание/Стоп                                                 |
| ВКЛ  | выкл | Открытие до положения<br>МАКСИМУМ как макс.предел             |
| выкл | ВКЛ  | Закрытие до положения МИНИМУМ (положение ЗАКРЫТО) как минимум |
| ВКЛ  | ВКЛ  | Ожидание/Стоп                                                 |






Время поворота на открытие складывается из двух взаимозависимых времен  $t_1$  и  $t_2$ . Соответственно, время поворота на закрытие складывается из  $t_3$  и  $t_4$ . В качестве переломного положения используется ПРОМЕЖУТОЧНОЕ положение. Оно может настраиваться индивидуально.

Два взаимозависимых времени поворота позволяют изменять характеристику работы дроссельной заслонки. Например, можно характеристику воздушной заслонки согласовать с характеристикой газовой заслонки.

При этом режиме работы возможно установить время поворота до 51 с (2 x 25,5 с).

Возможные параметра для этого режима работы: P 68010, P 68011 und P 68020.



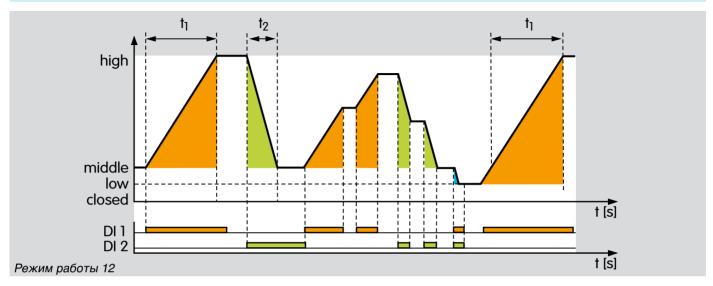


#### 3-х шаговый режим с двумя цифровыми входами

#### Режим работы 11

В состоянии ожидания (на DI 1 и DI 2 сигнал отсутствует) сервопривод находится в положении ЗАКРЫТО и дроссельная заслонка закрыта.

Если подается сигнал на DI 1 (на DI 2 сигнал отсутствует), дроссельная заслонка переходит в положение МИНИМУМ (положение розжига и минимальной нагрузки для горелки).


Если сигнал подается на DI 2 (на DI 1 сигнал отсутствует), дроссельная заслонка переходит в положение МАКСИМУМ для продувки.

Если сигнал подается на DI 1 и DI 2, дроссельная заслонка переходит в ПРОМЕЖУТОЧНОЕ положение (основная нагрузка горелки).

| DI 1/V1 | DI 2/<br>воздушный<br>клапан | Положение<br>IC 40           | Положение<br>заслонки                            |
|---------|------------------------------|------------------------------|--------------------------------------------------|
| выкл    | выкл                         | ЗАКРЫТО<br>closed            | ЗАКРЫТО                                          |
| вкл     | ВЫКЛ                         | МИНИМУМ<br>low               | положение<br>розжига/<br>минимальной<br>нагрузки |
| ВКЛ     | вкл                          | ПРОМЕЖУ-<br>ТОЧНОЕ<br>middle | основная<br>нагрузка<br>горелки                  |
| выкл    | вкл                          | MAКСИМУМ<br>high             | продувка                                         |

(см. Пример применения: ІС 40, ступенчатое регулирование с предварительной продувкой).



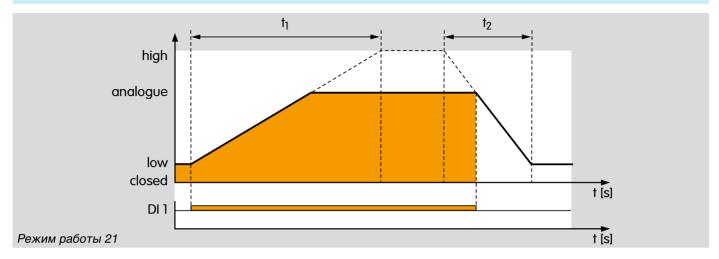


### 3х позиционно-шаговое регулирование с позицией МИНИМУМ

Режим работы 12

С подачей 3х позиционно-шагового сигнала на DI1 (на DI 2 нет сигнала) заслонка перемещается в положение МАКСИМУМ.

С подачей 3х позиционно-шагового сигнала на DI2 (на DI 1 нет сигнала) заслонка перемещается в положение ПРОМЕЖУТОЧНОЕ.


При отсутствии трех позиционно-шагового сигнала (на DI2 и DI 1 нет сигнала), привод остановится и заставит заслонку остановиться в текущем положении.

С подачей 3х позиционно-шагового сигнала на DI 1 и DI 2 привод перемещается с положения минимальной нагрузки на режим МИНИМУМ.

| DI 1 | DI 2 | Позиция IC 40                                  | Положение<br>заслонки                                |
|------|------|------------------------------------------------|------------------------------------------------------|
| выкл | выкл | Ожидание / стоп                                | Ожидание                                             |
| вкл  | выкл | открытие до позиции<br>МАКСИМУМ<br>high        | открытие<br>до достижения<br>основной<br>нагрузки    |
| выкл | вкл  | закрытие до позиции<br>ПРОМЕЖУТОЧНОЕ<br>middle | закрытие<br>до достижения<br>минимальной<br>нагрузки |
| ВКЛ  | вкл  | МИНИМУМ<br>low                                 | дальнейшее<br>закрытие<br>заслонки                   |
|      |      |                                                |                                                      |

(см. пример применения: ІС 40, плавное регулирование с трех позиционно-шаговым регулятором).





#### Аналоговые режимы работы 21...27

Общее описание - смотри Режимы работы.

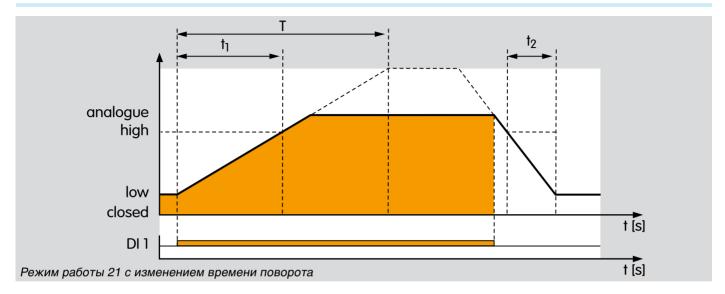
#### 2-х позиционный режим

Режим работы 21

В режиме ожидания (на DI 1 отсутствует сигнал) сервопривод находится в положении МИНИМУМ (положение МИНИМУМ может также быть равно  $0^{\circ}$  = положению ЗАКРЫТО).

При подаче сигнала на цифровой вход DI1 сервопривод поворачивается в положение, которое задано через аналоговый вход сигналом 4-20 мА. При отключении сигнала на DI1 сервопривод снова поворачивается в положение МИНИМУМ.

Сервопривод работает в тактовом режиме АНАЛОГ/МИНИМУМ (АНАЛОГ/ЗАКРЫТО), причем аналогичный сигнал определяет высоту тактового импульса (= ЗАДАНО). Высота тактового импульса,


которая может быть изменена аналоговым сигналом, устанавливается с помощью BCSoft.

Пример: 4 мА для 60% - и 20 мА для 100% открытия заслонки. Если аналоговый сигнал не подаётся, то сервопривод остаётся в положении МИНИМУМ (ЗАКРЫТО).

| DI 1 | Положение                     |
|------|-------------------------------|
| ВЫКЛ | МИНИМУМ/ЗАКРЫТО<br>low/closed |
| вкл  | АНАЛОГ<br>analogue            |

Скорость открытия для всего пути от МИНИМУМ до МАКСИМУМ задаётся временем  $t_1$ . Соответственно скорость закрытия для всего пути от МАКСИМУМ до МИНИМУМ задаётся временем  $t_2$ .





Для установки большего времени поворота (> 25,5 c), может быть выбрано уменьшенное значение положения МАКСИМУМ. Положение МАКСИМУМ не ограничивает высоту тактового импульса, а фиксирует скорость поворота сервопривода.

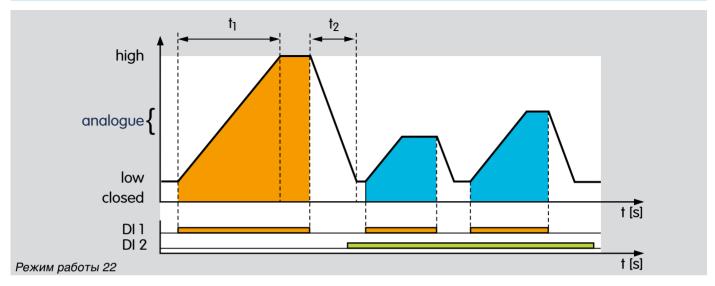
Поэтому положение МАКСИМУМ может быть задано меньше чем положение АНАЛОГ.

Положение АНАЛОГ определяется величиной токового сигнала.

Пример для удвоенного времени поворота Т: Положение МАКСИМУМ устанавливается на 50%.

$$T = t_1 \frac{100\%}{\text{high}}$$

$$T = 25,5 c \frac{100\%}{50\%}$$


$$T = 51 c$$

Возможные параметра для этого режима работы: Р 68026.

#### Указание:

Увеличение времени поворота возможно до максимум 150 с для полного поворота 0-90°. Времена поворота, оторые лежат за пределами заявленных изготовителем, могут быть установлены с помощью BCSoft.





## 2-х позиционный режим с переключением высоты тактового импульса

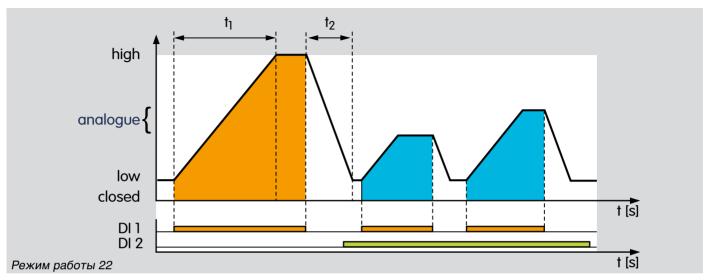
Режим работы 22

В состоянии ожидания (на DI1 и DI2 сигнал отсутствует) сервопривод независимо от величины аналогового сигнала находится в положении МИНИМУМ (положение МИНИМУМ может также быть равно  $0^{\circ}$  = положению ЗАКРЫТО).

Сигнал на DI1 - подан, DI2 - отсутствует: Через цифровом вход DI1сервопривод работает в тактовом режиме МАКСИМУМ / МИНИМУМ (МАКСИМУМ/ЗАКРЫТО).

Цифровой вход DI1 действует как тактовый вход. Подача сигнала на вход DI2:

Тактовый режим может в процессе работы переключаться между МАКСИМУМ /МИНИМУМ (МАКСИМУМ/ЗАКРЫТО) и АНАЛОГ/МИНИМУМ


(АНАЛОГ/ЗАКРЫТО). Высота тактового импульса, заданная сигналом на DI1, переключается сигналом на DI2. В этом случае сервопривод работает через цифровой вход DI1 в тактовом режиме АНАЛОГ/МИНИМУМ analog/low (АНАЛОГ/ЗАКРЫТО analog/closed).

Высота тактового импульса, которая может быть изменена аналоговым сигналом, программируется в BCSoft.

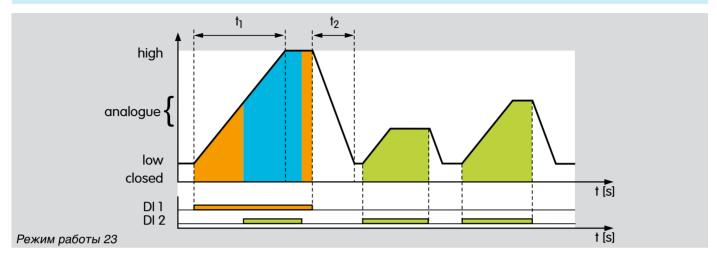
Например: 4 мА для 60 % - и 20 мА для 100 % открытия.

В зависимости от высоты тактового импульса может уменьшаться тепловая мощность горелок и, тем не менее, за счёт сохранения тактового режима работы горелок обеспечивается высокая равномерность температурного поля в печи.





| DI 1 | DI 2 | Положение                     |
|------|------|-------------------------------|
| выкл | ВЫКЛ | МИНИМУМ/ЗАКРЫТО<br>low/closed |
| ВКЛ  | ВЫКЛ | МАКСИМУМ<br>high              |
| выкл | вкл  | МИНИМУМ/ЗАКРЫТО<br>low/closed |
| ВКЛ  | вкл  | АНАЛОГ<br>analogue            |


Скорость открытия заслонки задаётся временем  $t_1$  для всего пути от положения МИНИМУМ (low) до положения МАКСИМУМ (high). Соответственно скорость закрытия заслонки задаётся временем  $t_2$  для всего пути от положения МАКСИМУМ (high) до положения МИНИМУМ (low). Скорости поворота будут сохраняться при обоих тактовых режимах. В соответствии со сдвигом положения

АНАЛОГ (analog) (токовый сигнал) изменяется соответственно и время поворота.

Положение АНАЛОГ может при этих режимах работы быть выше, чем положение МАКСИМУМ. Возможные параметра для этого режима работы:

P 68027.





# 2-х позиционный режим работы с изменением высоты тактового импульса

Режим работы 23

Работа в этом режиме соответствует режиму 22 с той лишь разницей, что оба цифровых входа используются как тактовые входы.

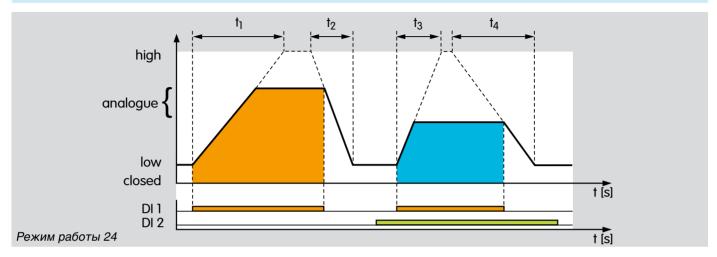
Через цифровой вход DI1 сервопривод работает в тактовом режиме Максимум/Минимум (high/low) (МАКСИМУМ/ЗАКРЫТО high/closed).

Через цифровой вход DI2 сервопривод работает в тактовом режиме АНАЛОГ/МИНИМУМ (analog/low) (АНАЛОГ/ЗАКРЫТО analog/closed).

Поданный сигнал на DI1 (приоритет) всегда ведет в положение МАКСИМУМ, что, к примеру, может быть использовано для продувки печи.

Высота тактового импульса, которая может быть изменена аналоговым сигналом, программируется в BCSoft.

Например: 4 мА для 60 % - и 20 мА для 100 % открытия.


В зависимости от высоты тактового импульса может уменьшаться тепловая мощность горелок и, тем не менее, за счёт сохранения тактового режима работы горелок, обеспечивать высокую равномерность температурного поля в печи.

Положение АНАЛОГ analog может при этих режимах работы быть выше, чем положение МАКСИМУМ (high).

|      | -,   | ( 3 /                            |
|------|------|----------------------------------|
| DI 1 | DI 2 | Положение                        |
| выкл | ВЫКЛ | МИНИМУМ/ЗАКРЫТО<br>low/closed    |
| вкл  | ВЫКЛ | МАКСИМУМ<br>high                 |
| выкл | вкл  | АНАЛОГ<br>analogue               |
| вкл  | вкл  | МАКСИМУМ (приоритет DI1)<br>high |

Возможные параметра для этого режима работы: Р 68028.





## 2-х позиционный режим с переключением времени поворота

Режим работы 24

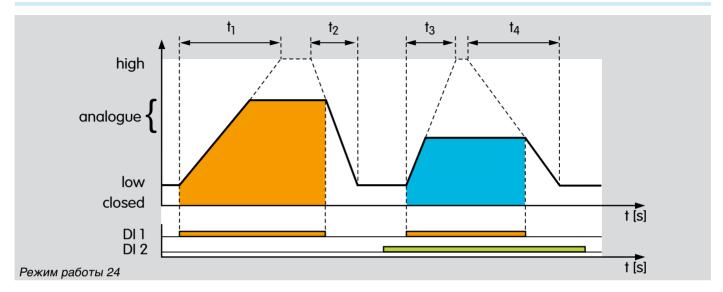
Цифровой вход DI1 действует как тактовый вход. Через DI1 сервопривод работает в тактовом режиме АНАЛОГ/МИНИМУМ (АНАЛОГ/ЗАКРЫТО).

В состоянии ожидания (DI1 сигнал отсутствует) сервопривод находится в положении МИНИМУМ (положение МИНИМУМ может также быть равно  $0^{\circ}$  = положению ЗАКРЫТО).

Высота тактового импульса, которая может быть изменена аналоговым сигналом, программируется в BCSoft.

Например: 4 мА для 60% и 20 мА для 100% открытия.

В зависимости от высоты тактового импульса может уменьшаться тепловая мощность горелок и, тем не менее, за счёт сохранения тактового режима работы горелок, обеспечивать высокую равномерность температурного поля в печи.


| DI 1 | Положение                     |
|------|-------------------------------|
| выкл | МИНИМУМ/ЗАКРЫТО<br>low/closed |
| вкл  | АНАЛОГ<br>analogue            |

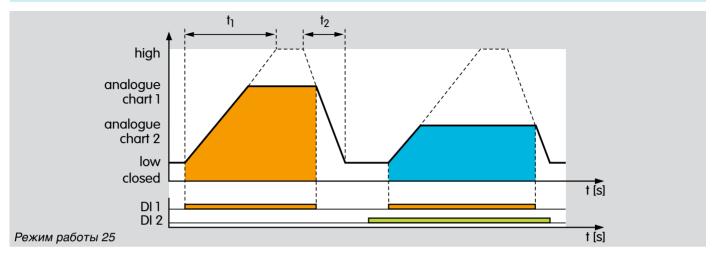
Через вход DI2 переключается время поворота сервопривода.

| DI 2 | Время открытия | Время закрытия |
|------|----------------|----------------|
| ВЫКЛ | t <sub>1</sub> | t <sub>2</sub> |
| ВКЛ  | t <sub>3</sub> | t <sub>4</sub> |

Переключение времени поворота может происходить в процессе движения.






Для установки большего времени поворота (> 25,5 c), может быть выбрано уменьшенное значение положения МАКСИМУМ. Пример увеличения в два раза времени поворота – смотри режим работы 21 с изменением времени поворота.

Положение МАКСИМУМ не ограничивает высоту тактового импульса, а фиксирует скорость поворота сервопривода.

Поэтому положение МАКСИМУМ может быть задано меньше чем положение АНАЛОГ.

Положение АНАЛОГ определяется величиной токового сигнала.

Возможные параметра для этого режима работы: Р 68029.



## 2-х позиционный режим с переключением характеристик I

#### Режим работы 25

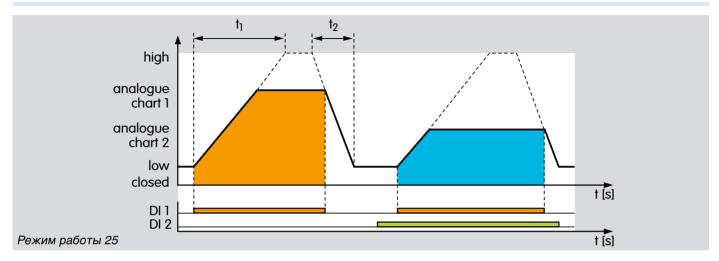
В состоянии ожидания (на DI 1 и DI 2 сигнал отсутствует) сервопривод находится в положении МИНИМУМ low (положение МИНИМУМ может также быть равно  $0^{\circ}$  = положению ЗАКРЫТО).

Вход DI 1 действует как тактовый вход. Через DI 2 осуществляется переключение характеристики аналогового сигнала (АНАЛОГ ГРАФИК1 (analog chart 1) / АНАЛОГ ГРАФИК 2 (analog chart 2)) и тем самым задаётся высота тактового импульса, который включается через вход DI1.

(analog chart 1/low) (ΑΗΑΛΟΓ ΓΡΑΦИΚ1/3ΑΚΡЫΤΟ

На входе DI2 сигнал отсутствует: Через цифровой вход DI1 сервопривод работает в тактовом режиме АНАЛОГ ГРАФИК1/ МИНИМУМ

(analog chart 1/closed)).


#### Сигнал на DI2 подан:

Через цифровой вход DI1 сервопривод работает в тактовом режиме АНАЛОГ ГРАФИК2/ МИНИМУМ (analog chart 2/low) (АНАЛОГ ГРАФИК2/3AKPЫTO (analog chart 2/closed)).

С помощью этой функции сервопривод может в процессе работы переключать тактовый режим работы. Высота тактового импульса может задаваться двумя характеристиками (charts) с 5 опорными точками каждая – смотри Аналоговый вход. Таким образом, один и тот же токовый сигнал может быть использован для двух режимов с различной тепловой нагрузкой, например для изменения коэффициента избытка воздуха или компенсации подогрева дутьевого воздуха.

Высота тактового импульса характеристик ГРАФИК1 (chart 1) и ГРАФИК2 (chart 2) могут устанавливаться независимо друг от друга. Высота тактового импульса ГРАФИК2 таким образом может быть выше чем ГРАФИК1.

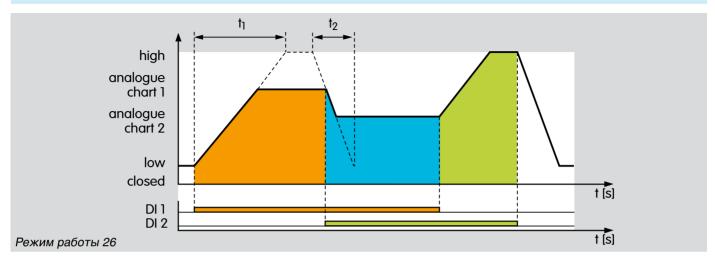




Горелки остаются дольше работать в тактовом режиме, что обеспечивает равномерное распределение температуры в печи также при незначительном теплопотреблении.

| DI 1 | DI 2 | Положение                          |
|------|------|------------------------------------|
| выкл | выкл | МИНИМУМ/ЗАКРЫТО<br>low/closed      |
| ВКЛ  | выкл | АНАЛОГ ГРАФИК1<br>analogue chart 1 |
| выкл | вкл  | МИНИМУМ/ЗАКРЫТО<br>low/closed      |
| ВКЛ  | вкл  | АНАЛОГ ГРАФИК2<br>analogue chart 2 |

Скорость открытия заслонки задаётся временем  $t_1$  для всего пути от положения МИНИМУМ low до положения МАКСИМУМ high. Соответственно скорость закрытия заслонки задаётся временем  $t_2$  для всего пути от положения МАКСИМУМ high до положения МИНИМУМ low. Скорости поворота будут сохраняться при обоих тактовых режимах.


Для установки большего времени поворота (> 25,5 c), может быть выбрано уменьшенное значение положения МАКСИМУМ. Пример увеличения в два раза времени поворота – смотри режим работы 21 с изменением времени поворота.

Положение МАКСИМУМ не ограничивает высоту тактового импульса, а фиксирует скорость поворота сервопривода. Высота тактового импульса задаётся величиной токового сигнала.

Положение МАКСИМУМ может быть задано меньше, чем положение АНАЛОГ ГРАФИК (analog chart). Если величина аналогового сигнала не задана, то сервопривод остаётся в положении МИНИМУМ low (ЗАКРЫТО closed).

Возможные параметра для этого режима работы: Р 68030.

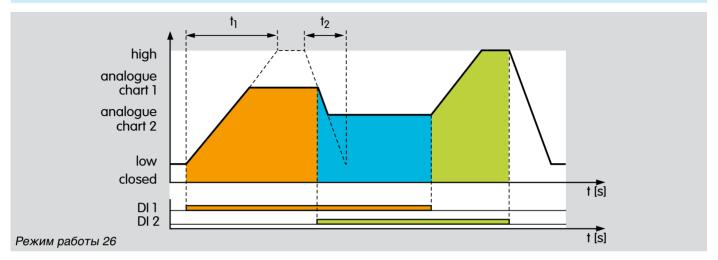




2-х позиционный режим с переключением характеристик II

Режим работы 26

В состоянии ожидания (на DI1 сигнал отсутствует) сервопривод находится в положении МИНИМУМ low (положение МИНИМУМ может также быть равно 0° = положению ЗАКРЫТО). Каждая комбинация сигналов на DI1 и DI2 задают определённое рабочее положение сервопривода:


| DI 1 | DI 2 | Положение                          |
|------|------|------------------------------------|
| выкл | выкл | МИНИМУМ/ЗАКРЫТО<br>low/closed      |
| вкл  | выкл | АНАЛОГ ГРАФИК1<br>analogue chart 1 |
| выкл | вкл  | МАКСИМУМ<br>high                   |
| вкл  | вкл  | АНАЛОГ ГРАФИК2<br>analogue chart 2 |

Изменение комбинации сигналов ведёт непосредственно к переходу сервопривода в новое положение.

Положение МАКСИМУМ high может быть задано меньше, чем положение АНАЛОГ ГРАФИК analog chart. Скорость открытия заслонки задаётся временем  $t_1$  для всего пути от положения МИНИМУМ low до положения МАКСИМУМ high. Соответственно скорость закрытия заслонки задаётся временем  $t_2$  для всего пути от положения МАКСИМУМ high до положения МИНИМУМ low. Скорости поворота не зависят от цифровых входов и аналогового входа.

В распоряжении имеется 2 характеристики с 5 опорными положениями - смотри Аналоговый вход.





Таким образом, один и тот же токовый сигнал может быть использован для двух режимов с различной тепловой нагрузкой, например для изменения коэффициента избытка воздуха или компенсации подогрева дутьевого воздуха

#### Тактовый режим

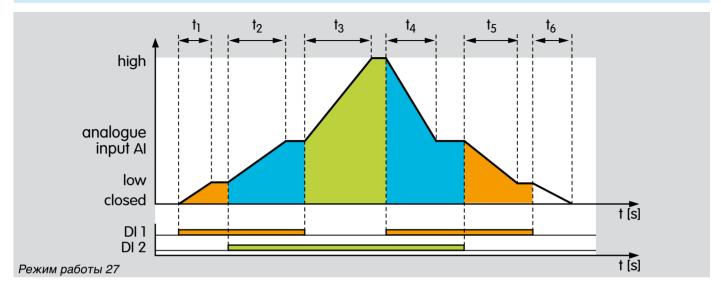
На входе DI2 сигнал отсутствует: Через цифровой вход DI1 сервопривод работает в тактовом режиме АНАЛОГ ГРАФИК1/ МИНИМУМ analog chart 1 / low (АНАЛОГ ГРАФИК1/ЗАКРЫТО analog chart 1/closed).

На входе DI1 сигнал отсутствует: Через цифровй вход DI2 сервопривод работает в тактовом режиме Максимум/Минимум high/ low (МАКСИМУМ/ ЗАКРЫТО high/closed).

На входах DI1 и DI2 одновременно подаются сигналы или отсутствуют сигналы:

Серводвигатель работает в тактовом режиме АНАЛОГ ГРАФИК2 / МИНИМУМ analog chart 2/low (АНАЛОГ ГРАФИК2 / ЗАКРЫТО analog chart 2/closed).

Если всей комбинаторикой сигналов управлять с помощью контроллера, то возможно реализовать тактовый режим МАКСИМУМ/АНАЛОГ ГРАФИК1/ АНАЛОГ ГРАФИК2/МИНИМУМ (ЗАКРЫТО) high/analog chart 1/analog chart 2/low (closed).


#### Режим плавного регулирования

Сервопривод может через токовый вход 4-20 мА также работать в режиме плавного регулирования. При этом он может с помощью цифровых входов переключаться между двумя характеристиками - смотри Аналоговый вход.

Как и при режиме работы 25 можно также выполнить регулирование коэффициента избытка воздуха и компенсацию подогрева дутьевого воздуха.

Возможные параметра для этого режима работы: Р 68031.



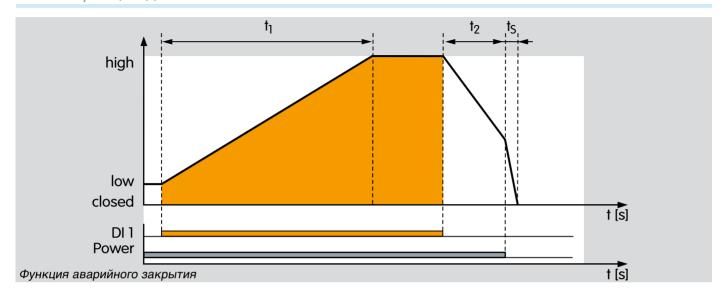


2х шаговый режим работы с двумя цифровыми входами и переменным углом регулирования

Режим работы 27

В режиме ожидания (на DI 1 и DI 2 нет сигналов), привод в положении ЗАКРЫТО, заслонка закрыта. Сигнал на DI 1 (на DI 2 нет сигнала) устанавливает клапан положение МИНИМУМ (положение розжига и минимальной нагрузки).

Сигнал на DI 2 (на DI 1 нет сигнала) переводит заслонку в положение МАКСИМУМ для предварительной продувки.


Сигнал на DI 1 и DI 2 дает разрешение на регулирование заслонки и бескаскадную синхронизацию между минимальной и основной нагрузкой через аналоговый вход AI.

Частота синхронизации, которая может быть изменена через аналоговый сигнал, задается в BCSoft. Пример: 4 мА для 60% и 20 мА для 100%-ого открытия.

| D  | l 1 | DI 2 | Позиция ІС 40     | Положение заслонки                                                           |
|----|-----|------|-------------------|------------------------------------------------------------------------------|
| ВЬ | ІКЛ | выкл | ЗАКРЫТО<br>closed | ЗАКРЫТО                                                                      |
| В  | КЛ  | выкл | МИНИМУМ<br>low    | позиция розжига/<br>минимальная нагрузка                                     |
| В  | кл  | вкл  | AI                | каждое положение<br>между позицией розжига<br>и предварительной<br>продувкой |
| ВЬ | ІКЛ | вкл  | МАКСИМУМ<br>high  | предварительная<br>продувка/основная<br>нагрузка                             |

(см. пример применения: IC 40, плавное регулирование с определенным положением розжига)





#### Функция аварийного закрытия

Функция аварийного закрытия включается при аварии, или отключении питающего напряжения, или при неисправности двигателя сервопривода.

Предварительно взведенная спиралевидная пружина поворачивает приводной вал в течение времени закрытия  $t_S < 1$  с до механического удара дроссельной заслонки в положении ЗАКРЫТО.

Быстрое закрытие предотвращает неконтролируемое попадание дутьевого воздуха а рабочее пространство печи при отключении напряжения или неисправности прибора. Попадание воздуха наряду с изменением атмосферы печи может привести в худшем случае также к повреждению нагреваемых деталей.

С целью сохранения срока службы деталей сервопривода и дроссельной заслонки функция аварийного закрытия должна использовать только

по назначению и не применяться для регулирования мощности горелки, в том числе и для тактового управления.

Функция аварийного отключения имеет сервопривод IC 40S в качестве опциона и может быть реализована только в комбинации с дроссельным клапаном BVHS. Как сервопривод, так и дроссельная заслонка должны быть оснащены этой функцией - смотри выбор/обозначения.



#### Параметры

В качестве поддержки для параметрирования в программном обеспечении BCSoft заложены различные варианты параметров.

С выбором параметров происходит выбор соответствующих режимов работы и происходит установка допустимых значений задаваемых величин. Каждый параметр может подстраиваться под индивидуальные требования установки.

#### Таблица параметров

| Параметр | Режим работы | Функция                                                                                |
|----------|--------------|----------------------------------------------------------------------------------------|
| P68001   | 6            | 3-х шаговый режим работы с одним или двумя цифровыми входами, время поворота: 6 с      |
| P68010   | 10           | 3-х позиционно-шаговый режим с дроблением времени поворота, время поворота: 51 с       |
| P68011   | 10           | 3-х позиционно-шаговый режим с дроблением времени поворота, время поворота: 30 с       |
| P68012   | 5            | 3-х позиционно-шаговый режим, время поворота: 15 с                                     |
| P68013   | 5            | 3-х позиционно-шаговый режим, время поворота: 7,5 с                                    |
| P68014   | 5            | 3-х позиционно-шаговый режим, время поворота: 4,5 с                                    |
| P68015   | 3            | 2-х шаговый режим с одним или двумя цифровыми входами, время поворота: 51 с            |
| P68016   | 3            | 2-х шаговый режим с одним или двумя цифровыми входами, время поворота: 30 с            |
| P68017   | 1            | 2-х шаговый режим, время поворота: 15 с                                                |
| P68018   | 1            | 2-х позиционный режим, время поворота: 7,5 с                                           |
| P68019   | 1            | 2-х позиционный режим, время поворота: 4,5 с                                           |
| P68020   | 10           | 3-х позиционно-шаговый режим с дроблением времени поворота, время поворота: 15 с       |
| P68021   | 2            | 2-х позиционный режим со временем стабилизации розжига горелки, время поворота: 4,5 с  |
| P68022   | 4            | 2-х шаговый режим с одним или двумя цифровыми входами, время поворота: 5 с             |
| P68023   | 7            | 2-х позиционный режим с переключением высоты тактового импульса, время поворота: 4,5 с |
| P68024   | 8            | 2-х позиционный режим с 2-мя различными положениями «Открыто»: время поворота: 4,5 с   |

| Параметр | Режим работы | Функция                                                                                |
|----------|--------------|----------------------------------------------------------------------------------------|
| P68025   | 9            | 2-х позиционный режим с переключением времени поворота, время поворота: 4,5 с          |
| P68026   | 21           | 2-х позиционный режим, время поворота: 7,5 с                                           |
| P68027   | //           | 2-х позиционный режим с переключением высоты тактового импульса, время поворота: 7,5 с |
| P68028   | 2.3          | 2-х позиционный режим с изменением высоты тактового импульса, время поворота: 7,5 с    |
| P68029   |              | 2-х позиционный режим с переключением времени поворота, время поворота: 4,5 с / 15c    |
| P68030   | 25           | 2-х позиционный режим с переключением характеристик I, время поворота: 7,5 с           |
| P68031   | 26           | 2-х позиционный режим с переключением характеристик II, время поворота: 7,5 с          |

#### Заводские параметры

Заводские параметры установлены в приборе, не могут быть изменены, но могут быть прочитаны с помощью BCSoft. К ним относятся данные двигателя и калибровки.

В заводских параметрах, кроме того, указан устанавливаемый параметр, который установлен при изготовлении.

Здесь могут параметрироваться также некоторые специальные функции, которые меняют работу цифровых входов - смотри Логику переключения.

#### Цифровые входы

При стандартной установке оба цифровых входа работают как универсальные входы. Поданное напряжение 24VDC или 100... 230VAC распознается как сигнал Вкл (положительная логика).

#### Логика переключения

Логика переключения может быть инвертирована для каждого отдельного цифрового входа. Подаваемое напряжение будет распознаваться как сигнал Выкл, в то время как отсутствие напряжения имеет значение Вкл - (отрицательная логика).

Инвертирование логики переключения входов в сочетаниями различными режимами работы позволяет реализовать новые возможности управления сервоприводом.

#### Распознавание сигнала

Если цифровой вход управляется только сигналом 100...230 VAC, то этот универсальный вход AC/DC может быть установлен в положение AC. В этом положении (AC), если поступает сигнал постоянного тока DC, сервопривод интерпретирует его как аварийный. Загорается красный светодиод LED и передается информация в BCSoft. Сообщение о неисправности учитывается в статистике. Распознавание сигнала может быть установлено в отдельности для каждой цифрового входа.

#### Аналоговый вход

Сервопривод с помощью токового сигнала на дополнительный вход может устанавливаться в соответствующее промежуточное положение. Эта функция может быть использована, если сервопривод IC 40 оснащен аналогичным входом 4-20 мА (опция).

Пороговое включение/выключение аналогичного входа установлено примерно на 3 мА.

Соответствие токового сигнала и положения сервопривода может иметь пять пар программируемых значений (опорных положений). Если на сервопривод подается токовый сигнал, то он поворачивается в позицию, соответствующую промежуточному положению при 4, 8, 12, 16 и 20 мА. Положения сервопривода для значений сигнала между опорными положениями пропорциональны значению сигнала.

Для режимов работы 25 и 26 можно задавать 2 характеристики с 5 опорными положениями. При этом цифровые входы устанавливают, какая из характеристик является рабочей.

Таким образом, один и тот же электрический сигнал может быть использован для установки различных расходов через заслонку, например, для регулирования коэффициента избытка воздуха или компенсации подогрева воздуха - смотри режим работы 25 и режим работы 26.

#### Фильтрация и гистерезис токового сигнала

Чтобы подавлять помехи токового сигнала, аналоговый вход каждую миллисекунду анализирует сигнал и через 0,1 сек формирует его среднее значение. Фильтрацию можно увеличивать, при очень плохом входном сигнале, до 1 сек. Однако вместе с этим продлевается также и время реакции на изменение на аналоговом входе.

Токовый вход (4-20 мА) работает внутренне с разрешением 10 Бит (соответствует 0,1% сервопривода). Вместе с тем аналоговый вход может распознавать изменение равное 0,02 мА (гистерезис).



Если входной сигнал имеет слишком сильные колебания (например, из-за помех), это высокое разрешение приводит к постоянным коррекциям положения сервопривода и дроссельной заслонки (при монтаже на BVA, BVG или BVH).

Поэтому гистерезис может увеличиваться до 0,2 мА. При этом соответственно точность сервопривода сокращается до 1%. В качестве основной установки соответственно установлена высокая точность.

#### Приоритет и время поворота при режимах работы 1...10

При режимах работы с 1 по 10 позиционирование сервопривода (0-100%) осуществляется обоими цифровыми входами DI 1 и DI 2. На IC 40А..А существует альтернативная возможность посредством токового сигнала 4...20 мА позиционировать сервопривод. Приоритет аналогового входа или цифровых входов устанавливается через BCSoft. В заводской настройке приоритет имеют цифровые входы.

Для аналогового режима скорости открытия и закрытия могут устанавливаться от 0 до 25,5 сек. При этом время относится всегда к промежутку, который лежит между положениями от 4 до 20 мА. Если электрический сигнал изменяется более медленно чем установленное время работы, привод соответственно работает более медленно, вплоть до ступенчатого движения - смотри Время поворота.

#### Выходы

На оба выхода RO 1 и RO 2 могут подаваться различные независимые сигналы: положения - ЗАКРЫТО, МИНИМУМ, ПРОМЕЖУТОЧНОЕ и МАКСИМУМ, сообщения о неисправностях и сигнал о любом текущем положении сервопривода.

Для подачи выходных сигналов используются 2 реле с переключающимися контактами. Контакты свободны от потенциала и обозначаются как "Dry-Contact» (свободный «сухой» контакт). Поэтому они могут успешно использоваться в системах автоматизации.

В качестве выходного сигнала может использоваться, например, сигнал о достижении заданного положения. Путём сравнения в BCSoft может быть выбрана область, в которой определенный выход, будет выдавать сигнал. Область может быть =,  $\geq$  или  $\leq$  установленного значения. Таким образом, можно имитировать, к примеру, поведение кулачкового диска.

Пример для выхода 1 (OUT1): при использовании сигнала выходного реле, подключаются клеммы 10 и 12 - смотри Схему подключения IC 40.

Область срабатывания реле может устанавливаться индивидуально с помощью минимального и максимального значения. Эти установки не зависят от выбранного положения МИНИМУМ, ПРОМЕЖУТОЧНОЕ и МАКСИМУМ.

Сигнал обратной связи может использоваться как сообщение о неисправности. В BCSoft предоставляется возможность выбора, в какое состояние установить выход (соответствующее реле) при работе.

#### Сервопривод неисправен:

Внутренняя ошибка, например, неисправность микропроцессора, которая привела к аварии сервопривода.

#### Ошибка позиционирования:

Контроль положения мотора определил ошибку. Необходима калибровка.

#### Высокая температура прибора:

Температура внутри > 90°C. Установить теплозащитную пластину.

#### Требуется обслуживание:

При количестве циклов, перемен направления или переключений реле больше предельной нормы.

Под «сообщение о неисправности» подпадает также сообщение «устройство в ручном режиме», хотя при этом речь не идет о сообщении о нарушении работы.

Точная причина сообщения показывается через BCSoft и сохраняется в статистике – смотри раздел «Статистика».

Только сигнал обратной связи IC 40 не должен использоваться для передачи защищенной от ошибки информации о состоянии или положении сервопривода – смотри Указания по проектированию.



#### Ручное управление

Для упрощенного ввода в эксплуатацию управление приводом ІС 40 можно осуществлять в ручном режиме с помощью программного обеспечения BCSoft. Ручное управление активируется с помощью BCSoft. Существует 2 вида ручного управления: непосредственная установка положения и симуляция входных сигналов. После выбора желаемого вида ручного управления, относящиеся к нему установочные возможности, активируются. В обоих ручных режимах устройство реагирует на уставки заданные программным обеспечением, так как они имеют преимущества перед внешними входными сигналами. Быстрое мигание синего светодиода (LED) показывает, что привод ІС 40 находится в ручном режиме. Ручной режим работы может быть включен в любой момент. Прежде чем включить другой вид ручного управления должен быть отменен действующий.

#### Непосредственная установка положения

Этот вид ручного управления предназначен для определения положений заслонки при работе в различных режимах, как, например, положения малой мощности (МИНИМУМ low), розжига (ПРОМЕЖУТОЧНОЕ middle) и полной нагрузки (МАКСИМУМ high). При этом сервопривод может перемещаться независимо от входных сигналов в любое положение. Положение непосредственно может вноситься или изменяться через BCSoft. Точность задания положения устанавливается в областях Точная/Нормальная/Грубая, причем точное задание позволяет устанавливать каждый шаг мотора в пределах <0,05%. После переноса значений из BCSoft к сервоприводу, он реагирует на новые уставки. При этом новое положение устанавливается всегда с максимальной скоростью. Установленное

положение может соответствовать в BCSoft одному из положений, например, положению зажигания.

#### Симуляция входных сигналов

и оптимизировать их.

При включении этого ручного режима внешние входы дезактивируются. Вместо них вручную устанавливаются сигналы с обоих цифровых входов. Если речь идет о сервоприводе с аналоговым входом 4-20 мА (опция), то он также может симулироваться. Работа сервоприводов может проверяться включением входов. Вследствие этого можно проверять установленные в BCSoft значения



#### Статистика

В разделе статистика BCSoft сохраняются собранные в сервоприводе статистические данные, такие как сообщения о неисправностях, различные показания счетчика и измеренные значения,

Области **Счетчик** и **Измеряемые значения** разделяются на соответственно общие данные и данные пользователя. Данные пользователя служат для сбора информации в течение определенного периода работы сервопривода.

#### Счетчик

В статистике собираются данные о количестве циклов (0-100-0%), смене направления (Открыто / Закрыто), переключений реле, включений напряжения питания, а также продолжительности работы сервопривода.

Наряду с общими счетчиками имеется счетчик пользователя, регистрирующий сведения в течение определенного периода работы.

#### Измеряемые значения

В статистике собираются данные о минимальной и максимальной внутренней температуре внутри корпуса сервопривода. Дополнительно отображается актуальная внутренняя температура. Также здесь имеется архив пользователя для просмотра определенного периода.

#### Вызов статистики

Все сообщения и данные пользователя могут обнуляться. Дата обнуления автоматически сохраняется и показывается вместе с данными пользователя.

Счетчики и измеряемые значения не могут обнуляться или удаляться.

#### Вызов сообщений о неисправностях

Сообщение о неисправности сигнализируется красным LED на сервоприводе. Подробно причина сообщения показывается в BCSoft. Причину необходимо устранить. После чего сообщение посредством BCSoft может быть сосчитано и обнулено.



#### Дисплей

Нормальный режим работы

| Синий светодиод      | Красный светодиод    | Состояние программы    |
|----------------------|----------------------|------------------------|
| Среднее мигание**    | Выкл                 | Нулевая калибровка     |
| Медленное мигание*** | Медленное мигание*** | Калибровка             |
| Вкл                  | Выкл                 | Готовность к работе    |
| Среднее мигание**    | Выкл                 | Работа                 |
| Быстрое мигание*     | Выкл                 | Ручной режим           |
| Быстрое мигание*     | Выкл                 | Работа в ручном режиме |
| Постоянный свет      | см. сигнал аварии    | Неисправность          |

<sup>\*</sup>быстрое: 5 раз в секунду, \*\*среднее: 3 раза в секунду, \*\*\*медленное: один раз в секунду

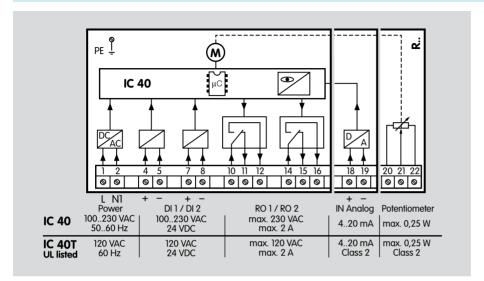
#### Предупреждения и неисправности

| предупрежде                           | HINA N HC                 | лоправност                       | VI                                         |                                           |                                                                                                                                           |
|---------------------------------------|---------------------------|----------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Синий<br>светодиод                    | Красный<br>свето-<br>диод | BCSoft код<br>неисправ-<br>ности | Предупреж-<br>дение*/ Неис-<br>правность** |                                           | Причина                                                                                                                                   |
| В соответствии с состоянием программы | Мигание<br>(1 раз)        | 1                                | Предупреж-<br>дение                        | Температура внутри корпуса > 90°C         | - Высокая температура<br>окружающей среды                                                                                                 |
| В соответствии с состоянием программы | Мигание<br>(2 раза)       | 4                                | Предупреж-<br>дение                        | Дрейф (отклонение)<br>переключателя > 5%  | - Механическая эксцентричность клапана - Ход клапана против упора                                                                         |
| В соответствии с состоянием программы | Мигание<br>(3 раза)       | 7                                | Предупреж-<br>дение                        | Дрейф (отклонение)<br>переключателя > 10% | - Механическая эксцентричность клапана - Ход клапана против упора                                                                         |
| В соответствии с состоянием программы | Мигание<br>(4 раза)       | 8                                | Предупреж-<br>дение                        | Переключатель не размыкается              | - Клапан заблокирован<br>- Сильная механич. эксцентричность<br>- Внутренняя ошибка<br>- Перекручена обмотка                               |
| В соответствии с состоянием программы | Мигание<br>(5 раз)        | 9                                | Предупреж-<br>дение                        | Переключатель не замыкается               | <ul> <li>Клапан заблокирован</li> <li>Внутренняя ошибка</li> <li>Перекручена обмотка привода,<br/>механическая эксцентричность</li> </ul> |
| В соответствии с состоянием программы | Мигание<br>(6 раз)        | 10                               | Предупреж-<br>дение                        | Аналоговый вход AI <4 мА                  | - Прерывистый сигнал<br>- Сигнал не подключен<br>- Неисправность входа                                                                    |

| Синий<br>светодиод                    | Красный<br>свето-<br>диод |    | Предупреж-<br>дение*/ Неис-<br>правность** | Описание                                                                            | Причина                                                                                                                                      |
|---------------------------------------|---------------------------|----|--------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| В соответствии с состоянием программы | Мигание<br>(7 раз)        | 21 | Предупреж-<br>дение                        | Замечание по обслуживанию: количество циклов переключений ОТКРЫТО/ЗАКРЫТО > Limit   |                                                                                                                                              |
| В соответствии с состоянием программы | Мигание<br>(8 раз)        | 22 | Предупреж-<br>дение                        | Замечание по обслуживанию: количество смены направлений > Limit                     |                                                                                                                                              |
| В соответствии с состоянием программы | Мигание<br>(9 раз)        | 23 | Предупреж-<br>дение                        | Замечание по обслуживанию: количество выходов реле переключений RO1 или RO2 > Limit |                                                                                                                                              |
| Мигание (1 раз)                       | постоян.<br>свет          | 5  | Неисправ-<br>ность                         | Внутреннее предупреждение                                                           | - Например, ошибка чтения<br>или записи EEPROM                                                                                               |
| Мигание (2 раз)                       | постоян                   | 11 | Неисправ-<br>ность                         | Нулевая калибровка:<br>переключатель не замыкается                                  | <ul> <li>Клапан заблокирован</li> <li>Внутренняя ошибка</li> <li>Перекручена обмотка привода</li> <li>Клапан не подходит к (BVHS)</li> </ul> |
| Мигание (3 раз)                       | постоян.<br>свет          | 12 | Неисправ-<br>ность                         | Нулевая калибровка:<br>переключатель не размыкается                                 | - Клапан заблокирован<br>- Внутренняя ошибка<br>- Перекручена обмотка привода                                                                |
| Мигание (4 раз)                       | постоян.<br>свет          | 13 | Неисправ-<br>ность                         | Нулевая калибровка:<br>переключатель замыкается<br>слишком рано (BVHS)              | <ul> <li>Пружина неисправна /слишком слабая закрывается</li> <li>Клапан ненадежно</li> <li>Кулачок неисправен</li> </ul>                     |
| Мигание (5 раз)                       | постоян.<br>свет          | 14 | Неисправ-<br>ность                         | Нулевая калибровка:<br>переключатель замыкается<br>слишком поздно (BVHS)            | - Эксплуатационное повреждение или неисправность двигателя - Кулачок неисправен                                                              |
| Мигание (6 раз)                       | постоян.<br>свет          | 30 | Неисправ-<br>ность                         | Ошибка памяти при<br>установке параметров                                           |                                                                                                                                              |
| Мигание (7 раз)                       | постоян.<br>свет          | 31 | Неисправ-<br>ность                         | Ошибка памяти: заводские параметры                                                  |                                                                                                                                              |
| Мигание (8 раз)                       | постоян.<br>свет          | 32 | Неисправ-<br>ность                         | Ошибка памяти: калибровка пользователя                                              |                                                                                                                                              |
| Мигание (9 раз)                       | постоян.<br>свет          | 33 | Неисправ-<br>ность                         | Ошибка памяти: аналоговые параметры                                                 |                                                                                                                                              |

<sup>\*</sup>Предупреждение: мигание светодиода на приборе активизировано через выбор в BCSoft. Прибор продолжает работать. \*\* Неисправность: светодиод постоянно мигает. Прибор не работает.




#### Функции выходов реле RO 1 и RO 2

Функции цифровых выходов RO 1 и RO 2 квалифицировано могут быть установлены с помощью BCSoft.

| Функции цифровых выходов пО       | т и по 2 квалифицировано могут обть уста                                                                                                                                                                                                  | ановлены с помощью возоп.                                                                                                      |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Сигнал на RO 1 или RO 2           | Другие опции уставок                                                                                                                                                                                                                      | Комментарии                                                                                                                    |
| Положение ЗАКРЫТО (closed)        |                                                                                                                                                                                                                                           |                                                                                                                                |
| Положение МИНИМУМ (low)           | Равно =                                                                                                                                                                                                                                   |                                                                                                                                |
| Положение ПРОМЕЖУТОЧНОЕ (middle)  | Больше/или равно > =<br>Равно или меньше, чем < =                                                                                                                                                                                         |                                                                                                                                |
| Положение ОТКРЫТО (high)          |                                                                                                                                                                                                                                           |                                                                                                                                |
| Позиция свободного переключения   | Минимальное и максимальное значение [°, %]                                                                                                                                                                                                | Реле переключается, когда клапан между мин. и макс. положением                                                                 |
| Неисправности и<br>Предупреждения | Дрейф (отклонение) переключателя ссылки > 5 %* Дрейф (отклонение) переключателя ссылки > 10 %* Переключатель не размыкается* Переключатель не замыкается* Внутренняя температура > 90 °C Аналоговый выход < 4 мА Указания по обслуживанию | Неисправность всегда сигнализация предупреждений по выбору BCSof (См. Входы/Выходы, Предупреждения на дисплее)                 |
| Неисправность                     |                                                                                                                                                                                                                                           | Показываются только неисправности                                                                                              |
| Ручной режим                      |                                                                                                                                                                                                                                           | Прибор в программном<br>статусе ручного режима                                                                                 |
| Готов к работе                    |                                                                                                                                                                                                                                           | Реле срабатывает при: неисправности (без предупреждения), ручной режим, нулевая калибровка, калибровка, нет напряжения питания |
| Нет                               |                                                                                                                                                                                                                                           | Выход реле не имеет функций                                                                                                    |
|                                   |                                                                                                                                                                                                                                           |                                                                                                                                |

<sup>\*</sup> Эти предупреждения будут показываться как ошибки позиционирования BCSoft.





#### Схема подключения

Смотри «Указания по проектированию».
Смотри «Технические данные».

#### Взаимозаменяемость приводов

#### GT 31 заменяется на IC 20

| GT 31    | Сервопривод                          | Сервопривод                          | IC 20      |
|----------|--------------------------------------|--------------------------------------|------------|
| 03       |                                      |                                      |            |
| 07       |                                      |                                      | 07         |
| 15       | Время поворота [c/90°]               | Время поворота [c/90°]               | 15         |
| 30       |                                      |                                      | 30         |
| 60       |                                      |                                      | 60         |
| Н        | Напряжение питания: 24 В~            | Напряжение питания: 100230 B~, ±10%  |            |
| M        | 120 B~                               | 120 B~, -15/+10%                     | Q          |
| Т        | 220/240 B~                           | 230 B~, -15/+10%                     | W          |
| 1        | Крутящий момент 1,2 Нм               | <del>-</del>                         | _          |
| 2        | Крутящий момент 2,5 Нм               | Крутящий момент 2,5 Нм*              | 2          |
| 3        | Крутящий момент 3,0 Нм               | Крутящий момент 3,0 Нм*              | 3          |
| •        | 3-х позиционно-шаговое регулирование | 3-х позиционно-шаговое регулирование | •          |
| R        | 2-х позиционное регулирование        | 2-х позиционное регулирование        | Е          |
| E        | Плавное регулирование                | Плавное регулирование                | Е          |
| G        | Дополнительный выключатель           | -                                    | _          |
|          | с золотыми контактами                |                                      |            |
| Р        | Потенциометр обратной связи 1000 Ом  | Потенциометр обратной связи 1000 Ом  | R10        |
| GT 31-30 | Пример                               | Пример                               | IC 20-30W3 |

• - стандартное исполнение

О - по заказу

\* IC 20-07: 2,5 Hм, IC 20-15/-30/-60: 3,0 м.

| OT O |                   | 10 40 |
|------|-------------------|-------|
| GI 3 | І заменяется на І | IC 40 |

| GT 31   | Сервопривод                                         | Сервопривод                                      | IC 40       |
|---------|-----------------------------------------------------|--------------------------------------------------|-------------|
| 03      |                                                     |                                                  |             |
| 07      |                                                     |                                                  |             |
| 15      | Время поворота [c/90°]                              | Время поворота 4,576,5 [c/90°]**                 |             |
| 30      |                                                     |                                                  |             |
| 60      |                                                     |                                                  |             |
| Н       | Напряжение питания: 24 В~                           | Напряжение питания***: 100230 B~, ±10%           |             |
| M       | 120 B~                                              |                                                  | Α           |
| Т       | 220/240 B~                                          |                                                  |             |
| 1       | Крутящий момент 1,2 Нм                              | -                                                |             |
| 2       | Крутящий момент 2,5 Нм                              | Крутящий момент 2,5 Нм*                          | 2           |
| 3       | Крутящий момент 3,0 Нм                              | Крутящий момент 3,0 Нм*                          | 3           |
| •       | 3-х позиционно-шаговое регулирование                | 3-х позиционно-шаговое регулирование**           | •           |
| R       | 2-х позиционное регулирование                       | 2-х позиционное регулирование**                  | •           |
| Е       | Плавное регулирование                               | Регулирование аналоговым входным сигналом 420 мА | Α           |
| G       | Дополнительный выключатель<br>с золотыми контактами | <del>-</del>                                     | _           |
| Р       | Потенциометр обратной связи 1000 Ом                 | Потенциометр обратной связи 1000 Ом              | R10         |
| GT 31-0 | 07Т2Е Пример                                        | Пример                                           | IC 40A2A    |
|         |                                                     | с параметро                                      | M P 68013** |

- - стандартное исполнение
- О по заказу
- \* IC 40: имеет 2,5 Hм; IC 40S имеет 3Hм.
- \*\* Возможна предварительная заводская установка параметров.
- \*\*\* Отключение напряжения питания на IC 40 недопустимо.



#### M5/M6 заменяются на IC 40

| M      | Электромагнитный привод              | Сервопривод                            | IC 40     |
|--------|--------------------------------------|----------------------------------------|-----------|
|        | Нормально закрытый                   | Функция аварийного закрытия            | S         |
| 5      | Типоразмер привода 5 для Ду 40-80    | -                                      | _         |
| 6      | Типоразмер привода 6 для Ду 100      | -                                      | _         |
| R      | Медленное открытие и закрытие        |                                        |           |
| L      | Медленное открытие, быстрое закрытие | Время поворота 4,576.5 [c/90°]**       |           |
| N      | Быстрое открытие и закрытие          |                                        |           |
| Т      | Напряжение питания: 220/240 В~       | Напряжение питания***: 100230 B~, ±10% | Α         |
| M      | 110 B~                               | <del>-</del>                           | _         |
| K      | 24 B=                                | <del>-</del>                           | -         |
|        | 2-х позиционное управление           | 2-х позиционное управление**           |           |
| 3      | Клеммное подключение, IP 54          | IP 65                                  | •         |
| 6      | стандартный штекер                   | <del>-</del>                           | -         |
| M 6RT3 | Пример                               | Пример                                 | IC 40SA   |
|        |                                      |                                        | D 00010## |

с параметром Р 68019

- - стандартное исполнение
- О по заказу
- IC 40: имеет 2,5 Hм; IC 40S имеет 3Hм.
- \*\* Поставляются с различными значениями предварительно установленных параметров
- \*\*\* Отключение напряжения питания на IC 40 недопустимо.

#### Выбор

ІС 20: Сервопривод как базовый вариант

ІС 40: Интеллектуальный сервопривод для комплексного применения

|                                                                                                                         | S                             | -07   | -15 | -30        | -60 |  | W | Q | Α | 21) | 31) | E3) | <b>A</b> 3) | R10 <sup>3)</sup> |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|-----|------------|-----|--|---|---|---|-----|-----|-----|-------------|-------------------|
| IC 20                                                                                                                   |                               | •     |     |            | •   |  | • |   |   |     | •   | 0   |             | 0                 |
| IC 40 <sup>2</sup> )                                                                                                    | 0                             |       |     |            |     |  |   |   |   |     | •   |     | 0           | O <sub>4</sub> )  |
| Тип = ІС                                                                                                                |                               |       |     |            |     |  |   |   |   |     |     |     |             |                   |
| Функция аварий (только для дрозаслонок BVHS)                                                                            |                               |       |     |            |     |  |   |   |   |     |     |     |             |                   |
| Время поворота<br>7,5 с = -07<br>15 с = -15                                                                             | (при 50 Гц)                   |       |     |            |     |  |   |   |   |     |     |     |             |                   |
| 30 c = -30                                                                                                              |                               |       |     |            |     |  |   |   |   |     |     |     |             |                   |
| 60 c = -60                                                                                                              |                               |       |     |            |     |  |   |   |   |     |     |     |             |                   |
| 4,576,5 с прогр                                                                                                         | раммируется                   |       |     |            |     |  |   |   |   |     |     |     |             |                   |
| Напряжение питания<br>230 B~, -15/+10%, 50/60 Гц = W<br>120 B~, -15/+10%, 50/60 Гц = Q<br>100230 B~, ±10%, 50/60 Гц = A |                               |       |     |            |     |  |   |   |   |     |     |     |             |                   |
| Крутящий момент<br>2,5 Hм = 2<br>3,0 Hм = 3                                                                             |                               |       |     |            |     |  |   |   |   |     |     |     |             |                   |
| Плавное регули Аналоговый вход                                                                                          | рование 0 (4)20 м<br>д 420 мА | ıA, 0 |     | = E<br>= A |     |  |   |   |   |     |     |     |             |                   |
| Потенциометр о<br>01000 Ом = R <sup>-1</sup>                                                                            |                               |       |     |            |     |  |   |   |   |     |     |     |             |                   |

- <sup>1)</sup> IC 20-07: 2,5 Hm, IC 20-15/-30/-60: 3,0 Hm. IC 40: 2,5 Hm, IC 40S: 3,0 Hm.
- 2) Возможна заводская предварительная настройка параметров. Пожалуйста укажите желаемые настройки при заказе.
- 3) Если «нет», обозначение отсутствует.
- 4) Не может быть модифицирован.

Пример заказа IC 40A2R10

#### Указания по проектированию

#### Выбор кабелей

Силовые кабели и кабели управления прокладывать разделено.

Проводку выполнять вдали от высоковольтных линий других устройств.

Обращать внимание на помехозащищённость при прокладке кабелей управления.

Использовать провода с наконечниками.

Поперечное сечение кабелей управления:

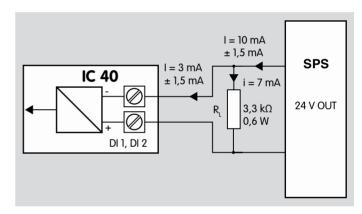
IC 20: максимум 1,5 мм<sup>2</sup>,

IC 40: максимум 2,5 мм<sup>2</sup>.

Смотри Технические данные.

#### Подключение

Смотри Схему подключения IC 20, смотри Схему подключения IC 20..E, смотри Схему подключения IC 40.


При частых скачках напряжения в питающей сети мы рекомендуем применять электрический сетевой фильтр.

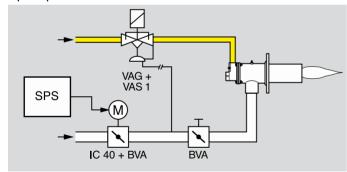
#### Цифровые входы IC 40

На цифровой вход необходимо подавать ток 3 мА ±1,5. Для исключения помех необходимо увеличение выходного тока с помощью дополнительного сопротивления на вводе сигнала. Сопротивление не рекомендуется устанавливать на IC 40 по причине теплового нагрева.

Пример для 24 В= и 10 мА:

Нагрузочное сопротивление = 3,3 кОм, 0,6 В.

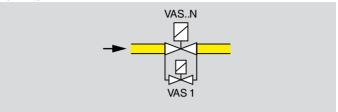



#### Сигнал обратной связи ІС 40

олько один сигнал обратной связи с выходов сервопривода (релейный контакт) не может использоваться сам по себе для передачи защищенной от ошибки информации о состоянии или положении сервопривода

Специальные директивы и нормы определяют, в каких случаях требуется защищенная от ошибок передача информации.

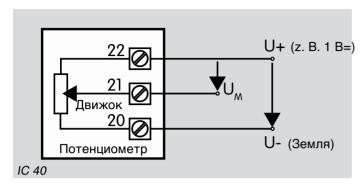
Согласно европейской норме EN 746-2, к примеру, сочетание двух не защищенных от ошибки сигналов нужно рассматривать как защищенную от ошибки информацию (сигнал), если они формируются различными физическими величинами.

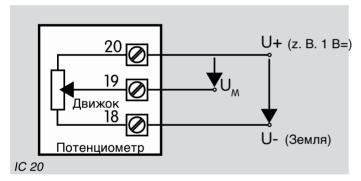

#### Пример 1:



Нахождение воздушного клапана в положение безопасного розжига горелки определяется защищенным от ошибки последовательным включением сигналов датчика давления и обратного сигнала от IC 40.

В этом случае датчик давления контролирует максимально допустимое давление воздуха, и таким образом, с помощью регулятора соотношения GIK ограничивает максимально допустимую пусковую мощность горелки.


#### Пример 2:




Другой возможностью для защищенного от ошибки ограничения пусковой мощности горелки является использование байпаса на газопроводе.

Байпасный клапан ограничивает расход газа, защищенным от ошибки способом, за счёт своего номинального условного прохода. При выборе номинального условного прохода клапана нужно учитывать максимально возможное давление газа.

Уровень надежности установки в каждом конкретном случае определяет потребитель. Фирма Kromschroeder может высказывать здесь только собственные оценки и следующие из этого рекомендации, которые не отражают индивидуальные особенности отдельных установок.





# Потенциометр обратной связи для IC 20/IC 40

Потенциометр обратной связи предоставляет опцию контроля текущего положения привода. Он может быть использован как делитель напряжения. Изменение положения движка потенциометра (которое соответствует положению привода) вызывает изменение разности потенциалов между U+ и U<sub>M</sub>.

Другие компоновки схемы дают менее точные результаты измерений и менее стабильны в течении длительного периода времени, либо трудны для исполнения. Они также могут снизить срок службы потенциометра обратной связи.

Привод IC 20 может быть модернизирован с помощью потенциометра – см. Принадлежности.

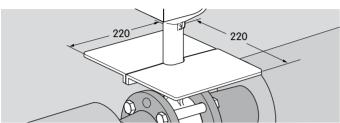
Поставка IC 40 с последующим встраиванием потенциометра невозможна. Однако, как опция привод может поставляться со встроенным потенциометром.



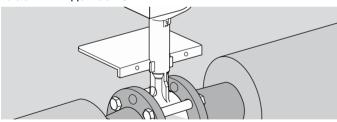
#### Монтаж

Рекомендуется на трубопроводе для заслонок с сервоприводами IC 20, IC 40 на входе и выходе предусматривать прямые участки длиной не менее 2xDN.

Монтажное положение IC 20, IC 40: вертикально или горизонтально, но не ниже оси трубопровода.


Если сервопривод устанавливается для регулирования горячего воздуха, мы рекомендуем хорошо изолировать трубопровод, чтобы сократить влияние температуры. При дополнительной установке теплозащитной пластины сервопривод можно использовать для регулирования среды с температурой до 450°C – смотри Принадлежности.

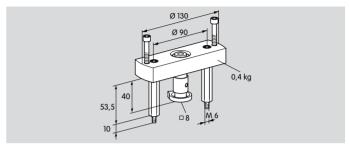
Требуется крепёжный комплект для самостоятельного применения, если сервопривод монтируется на заслонках отличных от DKL, DKG, BVA, BVG или BVH - смотри Принадлежности.


#### Ввод в эксплуатацию ІС 40

Если напряжение питания подано, сервопривод проводит проверку нулевого положения. Для этого привод открывает контрольный элемент приблизительно на 30°. Затем привод переходит в положение определенное режимом работы и входными сигналами.

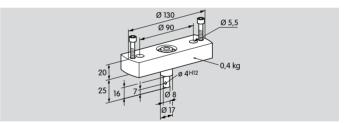
# Принадлежности IC 20, IC 40 Теплозащитная пластина




Сервопривод применяется с дроссельными заслонками BVH, BVHS для горячего воздуха с температурой до 250°С, при дополнительной установке теплозащитной металлической пластины - до 450 °С.



Заказной номер: 74921670


При изоляции трубопровода обратите внимание на наличие свободного места для монтажа теплозащитной металлической пластины и для винтового крепления в области клапана.

# Адаптеры для монтажа IC 20, IC 40 на дроссельных клапанах DKL, DKG



Заказной номер: 74921672

# Крепёжный комплект для самостоятельного применения IC 20, IC 40.




Заказной номер: 74921671

Данный комплект требуется при монтаже сервопривода на дроссельных заслонках отличных от DKL, DKG, BVA, BVG или BVH.

Принадлежности

#### Встраиваемый потенциометр на IC 20



Потенциометр обратной связи 1000 Ом. Потребляемая мощность потенциометра составляет максимум 0,5 Вт. Заказной номер: 74921144

#### Программное обеспечение BCSoft для IC 40

Комплект поставки оптического адаптера включает CD-диск с BC-Soft

Заказной номер: 74960437

Соответствующее актуальное программное обеспечение Вы можете найти в интернете на сайте http://www.Kromschroeder.de -> Produkte -> Downloads.

#### Технические данные

#### IC 20

Напряжение сети:

120B -15/+10%, 50/60 Гц, 230B -15/+10%, 50/60 Гц.

Потребляемая мощность:

4,9 Вт при 50 Гц; 5,4 Вт при 60 Гц.

Зажимные винтовые клеммы для проводов с сечением до 2,5 мм<sup>2</sup> (одножильные) и для проводов с наконечниками до 1,5 мм<sup>2</sup>.

Угол поворота: 0-90°, регулируется.

Тормозной момент = крутящему моменту.

Переключающая мощность позиционных выключателей:

| Напряжение | Нагрузка<br>контактов | Нагрузка<br>ламп<br>накаливания | Индуктивная<br>нагрузка |
|------------|-----------------------|---------------------------------|-------------------------|
| 125 B~     | 2 A                   | 0,5 A                           | 2 A                     |
| 250 B~     | 2 A                   | 0,5 A                           | 2 A                     |
| <30 B=     | 2 A                   | 2 A                             | 2 A                     |
| <50 B=     | 1 A                   | 0,4 A                           | 1 A                     |
| <75 B=     | 0,75 A                | 0,3 A                           | 0,75 A                  |
| <125 B=    | 0,5 A                 | 0,2 A                           | 0,03 A                  |
| <250 B=    | 0,25 A                | 0,1 A                           | 0,03 A                  |
| 1230 B~/=  | 10100 мА              | _                               | 10100 мА                |

#### IC 20..F

Потребляемая мощность:

Клеммы 1,2, и 5:

4,9 Вт при 50 Гц; 9,5 Вт при 60 Гц.

Клемма 3:

8,4 Вт при 50 Гц; 5,4 Вт при 60 Гц.

Суммарная мощность не должна превышать:

8,4 Вт при 50 Гц; 5,4 Вт при 60 Гц.

Выходы обратной связи:

гальваническая изоляция, полное сопротивление нагрузки 500 Ом.

Входы: гальваническая изоляция,

4 (0)...20 мА: переключение полного сопротивления

нагрузки от 50 Ом до 250 Ом,

0...10 В: входное сопротивление 100 кОм.

#### IC 40

Напряжение питания:

100-230 В ~, ±10%, 50/60 Гц,

сервопривод настраивается сам на

действительное напряжение сети.

Потребляемая мощность: 8,4 Вт.

Включение пиковой нагрузки: макс.8А за макс.10 мсек

Зажимные винтовые клеммы для проводов с сечением до 4 мм<sup>2</sup> (одножильные) и для

провод с наконечниками до 2,5 мм<sup>2</sup>.

Угол поворота: 0-90° регулируется с точностью < 0,05°.

Тормозной момент = крутящий момент, до тех пор, пока подается напряжение питания.

2 цифровых входа:

каждый 24 В постоянного тока или 100-230 В~.

Необходимый ток цифровых входов: 3 мA±1,5 мA.

1 аналоговый вход (опция): 4-20 мА

(внутренняя нагрузка максимум 500 Ом при 20 мА).

Потенциометр (опция):

1000 Ом+/-20%, линейное отклонение +/- 2%

макс. Мощность 0,25 Вт,

пластмассовый проводящий элемент

Внимание: Снятие напряжения при высоком

сопротивлении - см. Указания по проектированию.

#### 2 цифровых выхода:

Сигнальный контакт как переключающее реле.

Контактный ток цифровых выходов минимум 0,1 А и максимум 2 А.

Напряжение на контактах реле - 100-230 B~ или 24 B=.

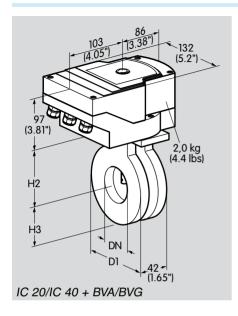
Если на контакты будет подано хотя бы однократно напряжение > 24 В и ток силой > 0,1 А, то покрытие из золота выгорит. Впоследствие этот контакт может быть подключен только на то напряжение, которое было подано, либо на большее.

#### 2 индикатора статуса LED:

- синий индикатор LED горит индикация режима «Включено», Сервопривод в работе = медленно мигающий свет; Ручной режим = быстро мигающий свет; Сервопривод стоит = постоянно горящий свет.
- красный индикатор LED для предупреждения и аварийный, Предупреждение = постоянно горящий свет; Авария = мигающий свет.
- красный и синий LED горят одновременно включен процесс калибровки = мигающий свет.

#### IC 20, IC 40

Степень защиты: ІР 65.


Класс защиты: I по EN 60335.

Электрическое подключение:

кабельные вводы: 3 х М20 пластмассовыми

резьбовыми вводами.

Температура окружающей среды: от -20 до 60°C, не допустимо образование конденсата.



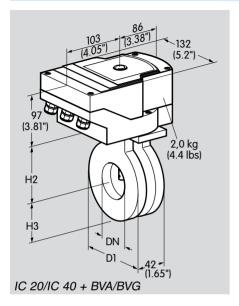
#### Время поворота и крутящие моменты

| Тип      | Время пово | рота [с/90°] | Крутящий момент [Нм] |       |  |  |
|----------|------------|--------------|----------------------|-------|--|--|
|          | 50 Гц      | 60 Гц        | 50 Гц                | 60 Гц |  |  |
| IC 20-07 | 7,5        | 6,25         | 2,5                  | 2     |  |  |
| IC 20-15 | 15         | 12,5         | 3                    | 3     |  |  |
| IC 20-30 | 30         | 25           | 3                    | 3     |  |  |
| IC 20-60 | 60         | 50           | 3                    | 3     |  |  |
| IC 40    | 4,576,5    | 4,576,5      | 2,5                  | 2,5   |  |  |
| IC 40S   | 4,576,5    | 4,576,5      | 3                    | 3     |  |  |

IC 20:

Время поворота на  $90^{\circ}$  зависит от необходимого крутящего момента.

При 60 Гц время поворота сокращается на коэффициент 0,83.


IC 40:

На ІС 40 величины времени и крутящего момента являются независимыми от частоты сети.

Время свободно параметрируется в пределах 4,5...76,5 сек.

#### Размеры IC 20 / IC 40 + BVA / BVG

| Тип                       | DN  | H2  | Н3  | D1  | Bec |
|---------------------------|-----|-----|-----|-----|-----|
|                           |     | MM  | ММ  | MM  | КГ  |
| IC 20/IC 40 + BVA/BVG 40  | 40  | 96  | 51  | 92  | 2,8 |
| IC 20/IC 40 + BVA/BVG 50  | 50  | 100 | 59  | 107 | 3,0 |
| IC 20/IC 40 + BVA/BVG 65  | 65  | 108 | 69  | 127 | 3,3 |
| IC 20/IC 40 + BVA/BVG 80  | 80  | 115 | 76  | 142 | 3,5 |
| IC 20/IC 40 + BVA/BVG 100 | 100 | 125 | 86  | 162 | 3,8 |
| IC 20/IC 40 + BVA/BVG 125 | 125 | 138 | 101 | 192 | 4,2 |
| IC 20/IC 40 + BVA/BVG 150 | 150 | 150 | 114 | 218 | 4,5 |



#### Размеры IC 20 / IC 40 + BVA / BVG с заниженным диаметром

С однократным занижением

| Тип                           | DN  | H2  | НЗ  | D1  | Bec |
|-------------------------------|-----|-----|-----|-----|-----|
|                               |     | MM  | ММ  | ММ  | кг  |
| IC 20/IC 40 + BVA/BVG 40/32   | 32  | 96  | 51  | 92  | 2,9 |
| IC 20/IC 40 + BVA/BVG 50/40   | 40  | 100 | 59  | 107 | 3,1 |
| IC 20/IC 40 + BVA/BVG 65/50   | 50  | 108 | 69  | 127 | 3,4 |
| IC 20/IC 40 + BVA/BVG 80/65   | 65  | 115 | 76  | 142 | 3,7 |
| IC 20/IC 40 + BVA/BVG 100/80  | 80  | 125 | 86  | 162 | 4,0 |
| IC 20/IC 40 + BVA/BVG 125/100 | 100 | 138 | 101 | 192 | 4,6 |
| IC 20/IC 40 + BVA/BVG 150/125 | 125 | 150 | 114 | 218 | 5,0 |

#### С двукратным занижением

| Тип                           | DN  | H2  | Н3  | D1  | Bec |
|-------------------------------|-----|-----|-----|-----|-----|
|                               |     | ММ  | ММ  | ММ  | ΚΓ  |
| IC 20/IC 40 + BVA/BVG 40/25   | 25  | 96  | 51  | 92  | 3,0 |
| IC 20/IC 40 + BVA/BVG 50/32   | 32  | 100 | 59  | 107 | 3,2 |
| IC 20/IC 40 + BVA/BVG 65/40   | 40  | 108 | 69  | 127 | 3,5 |
| IC 20/IC 40 + BVA/BVG 80/50   | 50  | 115 | 76  | 142 | 3,8 |
| IC 20/IC 40 + BVA/BVG 100/65  | 65  | 125 | 86  | 162 | 4,2 |
| IC 20/IC 40 + BVA/BVG 125/80  | 80  | 138 | 101 | 192 | 4,9 |
| IC 20/IC 40 + BVA/BVG 150/100 | 100 | 150 | 114 | 218 | 5,5 |



#### Размеры IC 20/IC 40 + BVH

| Тип                   | DN  | H2  | H3 | D1  | D2  | Bec |
|-----------------------|-----|-----|----|-----|-----|-----|
|                       |     | MM  | ММ | MM  | ММ  | кг  |
| IC 20/IC 40 + BVH 40  | 40  | 234 | 46 | 92  | -   | 5,4 |
| IC 20/IC 40 + BVH 50  | 50  | 239 | 54 | 107 | _   | 5,9 |
| IC 20/IC 40 + BVH 65  | 60  | 243 | 64 | 127 | _   | 6,8 |
| IC 20/IC 40 + BVH 80  | 80  | 254 | 71 | 142 | _   | 7,3 |
| IC 20/IC 40 + BVH 100 | 100 | 265 | 88 | 175 | 162 | 8,5 |

#### Техническое обслуживание

Сервоприводы IC 20, IC 40 просты в эксплуатации и не требуют технического обслуживания.

Проверку на работоспособность рекомендуется проводить 1 раз в год.

#### IC 40

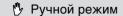
Обслуживание проводить после:

- 3 млн циклов (0-90-0°/0-100-0%),
- 3 млн переключений реле,
- 5 млн смен направления поворота.

#### Словарь

#### Пусковой расход горелки

Пусковая расход горелки - количество топлива, которое необходимо подавать в горелку при её розжиге.


#### Положение

Положение - это угол (0-90° или 0-100%), который устанавливает сервопривод. В зависимости от установленного режима работы имеются 4 положения: Closed =  $3AKPbITO = 0^\circ = 0\%$ , Low = MUHUMYM, Middle =  $\PiPOMEЖYTOHOE$ , High =  $MAKCUMYM = 90^\circ = 100\%$ 

#### Высота тактового импульса

Высота тактового импульса показывает достигнутое сервоприводом положение и определяет тем самым максимальный расход при тактовом режиме.

#### Легенда



Оигнал запуска

**Высокотемпературное управление** 

Запальный трансформатор

🖳 Газовый клапан

🖳 Воздушный клапан

Продувка

🖾 Внешнее управление воздушным клапаном

□ Сигнал регулирования

1, 2 Пилотная и основная горелка

□ Ч Сигнал аварии

**Ч** Деблокировка

t<sub>S</sub> Время закрытия